1
|
Hu P, Jia Z, Zhao S, Lin K, Yang G, Guo W, Yu S, Cheng J, Du G, Shi J. Injectable Therapeutic Hydrogel with H 2O 2 Self-Supplying and GSH Consumption for Synergistic Chemodynamic/Low-Temperature Photothermal Inhibition of Postoperative Tumor Recurrence and Wound Infection. Adv Healthc Mater 2024; 13:e2401551. [PMID: 38923861 DOI: 10.1002/adhm.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tumor recurrence and wound infection remain significant clinical challenges in surgery, often requiring adjuvant therapies. The combination treatment of photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be effective in cancer treatment and wound infection. However, the hyperthermia during PTT increases the risk of normal tissue damage, severely impeding its application. Moreover, the efficacy of CDT is limited by insufficient hydrogen peroxide (H2O2) and excessive glutathione (GSH) levels at tumor or infection sites. Herein, an injectable and multifunctional CuO2@Au hydrogel system (CuO2@Au Gel) is developed for synergistic CDT and low-temperature PTT (LTPTT) to prevent tumor recurrence and bacterial wound infections. CuO2@Au Gel is constructed by embedding therapeutic CuO2@Au into low-melting point agarose hydrogel. In vitro and in vivo experiments confirm that the CuO2@Au in CuO2@Au Gel is capable of self-supplying H2O2 and depleting GSH, exhibiting effective CDT effect in acidic tumor or bacterial infected microenvironment. Additionally, it exhibits favorable photothermal conversion ability, inducing localized temperature elevation and synergistically enhancing CDT efficiency. The prepared CuO2@Au Gel demonstrates efficient tumor ablation capability in post-surgery recurrence mouse models and exhibits promising anti-infective efficiency in bacterial infection wound models, indicating significant potential in adjuvant therapy for post-surgical treatment and recovery.
Collapse
Affiliation(s)
- Peng Hu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhili Jia
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuang Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Kunpeng Lin
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guoye Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Wujie Guo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuling Yu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jianjun Cheng
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
2
|
Xiong LH, Yang L, Geng J, Tang BZ, He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy. ACS NANO 2024; 18:17837-17851. [PMID: 38938113 DOI: 10.1021/acsnano.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Langyi Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Jiang F, Li L, Tian Y, Su Y, Zhao T, Ren R, Chi Z, Liu C. Enteromorpha Prolifera Polysaccharide-Derived Injectable Hydrogel for Fast Intraoperative Hemostasis and Accelerated Postsurgical Wound Healing Following Tumor Resection. Adv Healthc Mater 2024; 13:e2303456. [PMID: 38142288 DOI: 10.1002/adhm.202303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Intraoperative bleeding and delayed postsurgical wound healing caused by persistent inflammation can increase the risk of tumor recurrence after surgical resection. To address these issues, Enteromorpha prolifera polysaccharide (PEP) with intrinsic potentials for hemostasis and wound healing, is chemically modified into aldehyde-PEP and hydrazine-PEP. Thereby, an injectable double-network hydrogel (OPAB) is developed via forming dual dynamic bonding of acylhydrazone bonds between the decorated aldehyde and hydrazine groups and hydrogen bonds between hydroxyl groups between boric acid and PEP skeletons. The OPAB exhibits controllable shape-adaptive gelation (35.0 s), suitable mechanical properties, nonstimulating self-healing (60 s), good wet tissue adhesion (30.9 kPa), and pH-responsive biodegradability. For in vivo models, owing to these properties, OPAB can achieve rapid hemostasis within 30 s for the liver hemorrhage, and readily loading of curcumin nanoparticles to remarkably accelerate surgical wound closure by alleviating inflammation, re-epithelialization, granulation tissue formation, and collagen deposition. Overall, this multifunctional injectable hydrogel is a promising material that facilitates simultaneous intraoperative hemorrhage and postsurgical wound repair, holding significant potential in the clinical managements of bleeding and surgical wounds for tumor resection.
Collapse
Affiliation(s)
- Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Luxi Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yun Su
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Tiange Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Ruyi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
4
|
Hu L, Song C, Li H, Gao Y, Zhang J, Gao T, Wei Y, Xu Z, Xue W, Huang S, Wen H, Li Z, Wu J. Oxidized Dextran/Chitosan Hydrogel Engineered with Tetrasulfide-Bridged Silica Nanoparticles for Postsurgical Treatment. Macromol Biosci 2024; 24:e2200565. [PMID: 36871156 DOI: 10.1002/mabi.202200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Indexed: 03/06/2023]
Abstract
Tumor recurrence and wound microbial infection after tumor excision are serious threats to patients. Thus, the strategy to supply a sufficient and sustained release of cancer drugs and simultaneously engineer antibacterial properties and satisfactory mechanical strength is highly desired for tumor postsurgical treatment. Herein, A novel double-sensitive composite hydrogel embedded with tetrasulfide-bridged mesoporous silica (4S-MSNs) is developed. The incorporation of 4S-MSNs into oxidized dextran/chitosan hydrogel network, not only enhances the mechanical properties of hydrogels, but also can increase the specificity of drug with dual pH/redox sensitivity, thereby allowing more efficient and safer therapy. Besides, 4S-MSNs hydrogel preserves the favorable physicochemical properties of polysaccharide hydrogel, such as high hydrophilicity, satisfactory antibacterial activity, and excellent biocompatibility. Thus, the prepared 4S-MSNs hydrogel can be served as an efficient strategy for postsurgical bacterial infection and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lele Hu
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Hongyi Li
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yao Gao
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Jing Zhang
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Ting Gao
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Youhua Wei
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuoran Xu
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Weiming Xue
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Saipeng Huang
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huiyun Wen
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518000, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| |
Collapse
|
5
|
Li Z, Yang L, Zhang D, Wang W, Huang Q, Liu Q, Shi K, Yu Y, Gao N, Chen H, Jiang S, Xie Z, Zeng X. Mussel-inspired "plug-and-play" hydrogel glue for postoperative tumor recurrence and wound infection inhibition. J Colloid Interface Sci 2023; 650:1907-1917. [PMID: 37517190 DOI: 10.1016/j.jcis.2023.07.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Currently, clinical tumor resection is faced with two options: open and minimally invasive surgery. Open surgery is easy to completely remove the lesion but is prone to infection, while minimally invasive surgery recovers faster but may cause tumor recurrence. To fill the shortcomings of the two surgical modes and make the choice for tumor resection more effortlessly, we developed a postoperative black phosphorus-Ag nanocomposites-loaded dopamine-modified hyaluronic acid-Pluronic® F127 (BP-Ag@HA-DA-Plu) hydrogel implantation system that can prevent tumor recurrence and wound infection simultaneously. Experiments have shown that the hydrogel system combined with 808 nm near-infrared (NIR) irradiation has excellent anti-tumor, antibacterial, and wound healing abilities. Additionally, unlike existing surgical hydrogel products that require inconvenient in-situ cross-linking, the BP-Ag@HA-DA-Plu hydrogel system offers "plug-and-play" functionality during surgery due to its thermo-responsiveness, injectability, and adhesion, thereby greatly improving the efficiency of surgery.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nansha Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 518036, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Zhang DY, Cao RG, Cheng YJ, Liu WL, Huang R, Zhang AQ, Qin SY. Programming lipopeptide nanotherapeutics for tandem treatment of postsurgical infection and melanoma recurrence. J Control Release 2023; 362:565-576. [PMID: 37673305 DOI: 10.1016/j.jconrel.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Tumor recurrence and chronic bacterial infection constitute two major criteria in postsurgical intervention for malignant melanoma. One plausible strategy is the equipment of consolidation therapy after surgery, which relies on adjuvants to eliminate the residual tumor cells and inhibit bacterial growth. Until now, a number of proof-of-concept hybrid nanoadjuvants have been proposed to combat tumor recurrence and postsurgical bacterial infection, which may suffer from the potential bio-unsafety or involve complex design and synthesis. The batch-to-batch inconsistencies in drug composition further delay the clinical trials. To circumvent these issues, herein we develop a programmable strategy to generate lipopeptide nanotherapeutics with identical constitution for tandem intervention of postsurgical bacterial infection and cancer recurrence of melanoma. Increasing the number of hydrophobic linoleic acid within lipopeptides has been found to be a simple and practical strategy to improve the therapeutic outcomes for both tumor cells and bacteria. Self-assembled lipopeptide nanotherapeutics with two linoleic acid molecules possesses excellent antitumor activity and antimicrobial function toward both susceptible strains and drug-resistant bacteria. Arising from the incorporation of unsaturated linoleic acid, the unavoidable hemolysis of cationic peptide drugs was effectively alleviated. In vivo therapeutic abilities of postsurgical infection and tumor recurrence were investigated in BALB/c nude mice bearing a B16-F10 tumor model, with an incomplete surgical resection and in situ infection by methicillin-resistant Staphylococcus aureus (MRSA). Self-assembled lipopeptide nanotherapeutics could effectively inhibit cancer cell growth and bacterial infection, as well as promote wound healing. The easily scalable large-scale production, broad-spectrum antitumor and antibacterial bioactivities as well as fixed component endows lipopeptide nanotherapeutics as promising adjuvants for clinically postsurgical therapy of melanoma.
Collapse
Affiliation(s)
- Ding-Yi Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui-Ge Cao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yin-Jia Cheng
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Long Liu
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Ai-Qing Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Si-Yong Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
7
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Iota carrageenan gold-silver NPs photothermal hydrogel for tumor postsurgical anti-recurrence and wound healing. Carbohydr Polym 2022; 298:120123. [DOI: 10.1016/j.carbpol.2022.120123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
|