1
|
Wang LY, Ma C, Yang JN, Wang KX, Chen JS. Organometallic Polymer Constructed by Active Fe-C 12N 8 Centers for Boosting Sodium-Ion Storage. Angew Chem Int Ed Engl 2025; 64:e202413452. [PMID: 39155243 DOI: 10.1002/anie.202413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Organic-metal coordination materials with rich structural diversity are considered as promising electrode materials for rechargeable sodium-ion batteries. However, the electrochemical performance can be constrained by the limited number of active sites and structural instability under the discharge/charge process. Herein, organometallic polymer microspheres (Fe-PDA-220) with a unique d-π conjugated structure was designed and successfully constructed through a simple synchronous polymerization and coordination reactions. Polymerization of phenylenediamine was initiated by Fe3+ and Fe2+ ions generated synchronously during the polymerization integrated with poly-aminoquinone chains to form Fe-C12N8 active centers. Used as electrode materials for sodium-ion batteries, the distinctive Fe-C bond significantly boosts the structural stability, and the π-d conjugation system could facilitate electron transfer. A high reversible capacity of 345 mAh g-1 was delivered at 0.1 A g-1 and a capacity of 106 mAh g-1 was maintained even after discharged/charged at 1.0 A g-1 for 5000 cycles, outperforming most reported coordination materials. Spectroscopic and electronic analyses revealed that a two-electron reaction occurred per active unit, accompanied by the reversible redox evolution of the C=N groups and Fe ions during the sodiation/desodiation. This work provides a promising and efficient strategy for boosting the electrochemical performance of organic electrode materials by the design of organometallic polymers.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Ning Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Xue Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie-Sheng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Geng D, Zhang H, Fu Z, Liu Z, An Y, Yang J, Sha D, Pan L, Yan C, Sun Z. Regulating the Porosity and Bipolarity of Polyimide-Based Covalent Organic Framework for Advanced Aqueous Dual-Ion Symmetric Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407073. [PMID: 39159005 PMCID: PMC11496998 DOI: 10.1002/advs.202407073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The all-organic aqueous dual-ion batteries (ADIBs) have attracted increasing attention due to the low cost and high safety. However, the solubility and unstable activity of organic electrodes restrict the synergistic storage of anions and cations in the symmetric ADIBs. Herein, a novel polyimide-based covalent organic framework (labeled as NTPI-COF) is constructed, featured with the boosted structure stability and electronic conductivity. Through regulating the porosity and bipolarity integrally, the NTPI-COF possesses hierarchical porous structure (mesopore and micropore) and abundant bipolar active centers (C═O and C─N), which exhibits rapid dual-ion transport and storage effects. As a result, the NTPI-COF as the electrodes for ADIBs deliver a high reversible capacity of 109.7 mA h g-1 for Na+ storage and that of 74.8 mA h g-1 for Cl- storage at 1 A g-1, respectively, and with a capacity retention of 93.2% over 10 000 cycles at 10 A g-1. Additionally, the all-organic ADIBs with symmetric NTPI-COF electrodes achieve an impressive energy density of up to 148 W h kg-1 and a high power density of 2600 W kg-1. Coupling the bipolarity and porosity of the all-organic electrodes applied in ADIBs will further advance the development of low-cost and large-scale energy storage.
Collapse
Affiliation(s)
- Dongxiang Geng
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Heng Zhang
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071P. R. China
| | - Zhijian Fu
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Ziming Liu
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Yafei An
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Jun Yang
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Dawei Sha
- Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Long Pan
- School of Materials Science and EngineeringSoutheast UniversityNanjing210089P. R. China
| | - Chao Yan
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - ZhengMing Sun
- School of Materials Science and EngineeringSoutheast UniversityNanjing210089P. R. China
| |
Collapse
|
3
|
Bai YL, Zhang CC, Rong F, Guo ZX, Wang KX. Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Chemistry 2024; 30:e202304157. [PMID: 38270279 DOI: 10.1002/chem.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked.
Collapse
Affiliation(s)
- Yu-Lin Bai
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Chen-Chen Zhang
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Feng Rong
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Zhao-Xia Guo
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
4
|
Zhao Y, He J, Hu L, Yang J, Yan C, Shi M. Carboxyl-Substituted Organic Molecule Assembled with MXene Nanosheets for Boosting Aqueous Na + Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304182. [PMID: 37488687 DOI: 10.1002/smll.202304182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Aqueous alkali-ion batteries have enormous promise as a kind of safe, reliable, and sustainable energy technologies for power supplies. Although organic molecules with tunable and diverse configurations are potential electroactive materials, their inadequate redox activity and electron affinity hinder the practical application for aqueous alkali-ion storage. Herein, a novel electron-withdrawing carboxyl-substituted dipyridophenazine (CDPPZ) organic molecule is designed and synthesized for aqueous Na+ storage. Significantly, the introduction of carboxyl functional groups not only serves as additional redox-active sites for reversible Na+ coordination, but also causes the rearrangement of intramolecular electron cloud density to reduce the energy level, thereby ensuring the high redox activity and superior electron affinity of the CDPPZ molecule. For portable electronics, a self-supporting, adhesive-free, and flexible CDPPZ@MXene electrode is further constructed by incorporating highly redox-active CDPPZ molecule with MXene nanosheets, which delivers a fast, stable, and unrivaled aqueous Na+ storage capability with a high reversible capacity of 172.6 mAh cm-3 and excellent redox stability over 4000 cycles. In situ dynamic analysis combined with theoretical calculations illustrates the Na+ storage mechanism and corresponding coordinated pathway. Finally, a high-performance flexible aqueous Na-ion battery is fabricated with exceptional energy/power density and remarkable cycling lifespan, further confirming its promising application prospect.
Collapse
Affiliation(s)
- Yue Zhao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jing He
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Lintong Hu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Minjie Shi
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| |
Collapse
|
5
|
Wang LY, Cai ZP, Ma C, Wang KX, Chen JS. Poly( p-phenylenediamine)-Coated Metal-Organic Frameworks for High-Performance Sodium-Ion Batteries: The Balance of Capacity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44364-44372. [PMID: 37668259 DOI: 10.1021/acsami.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metal-organic frameworks (MOFs) with well-defined porous structures and highly active frameworks are considered as promising electrode materials for sodium-ion batteries (SIBs). However, the structure pulverization upon sodiation/desodiation impacts on their practical application in SIBs. To address this issue, poly(p-phenylenediamine) (PPA) was uniformly coated onto the surface of MIL-88A, a typical Fe-based MOF through in situ polymerization initiated by the metal ions (Fe3+) of MIL-88A. Used as an anode material for SIBs, the PPA-coated MIL-88A, denoted as PPA@MIL-88A, showed significantly improved electrochemical performance. A reversible capacity as high as 230 mAh g-1 was achieved at 0.2 A g-1 even after 500 cycles. MIL-88A constructed with electrochemically active Fe3+ and fumaric acid ligands guarantees the high specific capacity, while the PPA polymer coating effectively inhibits the pulverization of MIL-88A. This work provides an efficient strategy for improving the structure and cycling stability of MOFs-based electrode materials.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Peng Cai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Ren X, Bao E, Liu X, Xiang Y, Xu C, Chen H. Advanced Hybrid Supercapacitors Assembled With Beta-Co(OH)2 Microflowers and Microclews as High-performance Cathode Materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|