1
|
Yuan S, Zhang P, Zhang F, Yan S, Dong R, Wu C, Deng J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2025; 28:111663. [PMID: 39868039 PMCID: PMC11763584 DOI: 10.1016/j.isci.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution. These advanced methodologies converge with multi-signal mediator detection systems, furnishing potent, high-throughput platforms for dissecting cell-cell interactions at the single-cell level. This approach empowers researchers to delve into intricate cellular dynamics with unprecedented accuracy and efficiency. Here, we present a critical evaluation of the latest advancements in microfluidics-driven techniques for detecting signal mediators involved in cell-cell interactions and communication at the single-cell level. We underscore notable biological applications that have benefited from these technologies and identify pressing challenges that must be addressed in future endeavors leveraging microfluidic tools for single-cell interaction studies.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Peng Zhang
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Shiqiang Yan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruihua Dong
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Chengjun Wu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jiu Deng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
2
|
Kim J, Jo Y, Lim G, Ji Y, Roh JH, Kim WG, Yi HS, Choi DW, Cho D, Ryu D. A microbiota-derived metabolite, 3-phenyllactic acid, prolongs healthspan by enhancing mitochondrial function and stress resilience via SKN-1/ATFS-1 in C. elegans. Nat Commun 2024; 15:10773. [PMID: 39737960 DOI: 10.1038/s41467-024-55015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans). To elucidate the underlying mechanisms, we conduct transcriptomic profiling through RNA-seq analysis in C. elegans exposed to GTB1, a strain of Lactiplantibacillus plantarum or 3-phenyllactic acid (PLA), mimicking the presence of key candidate metabolites of GTB1 and evaluating healthspan. Our findings reveal that PLA treatment significantly extends the healthspan of C. elegans by promoting energy metabolism and stress resilience in a SKN-1/ATFS-1-dependent manner. Moreover, PLA-mediated longevity is associated with a novel age-related parameter, the Healthy Aging Index (HAI), introduced in this study, which comprises healthspan-related factors such as motility, oxygen consumption rate (OCR), and ATP levels. Extending the relevance of our work to humans, we observe an inverse correlation between blood PLA levels and physical performance in patients with sarcopenia, when compared to age-matched non-sarcopenic controls. Our investigation thus sheds light on the pivotal role of the metabolite PLA in probiotics-mediated enhancement of organismal healthspan, and also hints at its potential involvement in age-associated sarcopenia. These findings warrant further investigation to delineate PLA's role in mitigating age-related declines in healthspan and resilience to external stressors.
Collapse
Affiliation(s)
- Juewon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Physiology, Konkuk University College of Medicine, Chungju, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Gyumin Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul, Seoul, Republic of Korea
| | - Yosep Ji
- HEM Pharma Inc., 407, Suwon, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul, Seoul, Republic of Korea.
| | - Donghyun Cho
- HEM Pharma Inc., 407, Suwon, Republic of Korea.
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Ghasemzadeh-Hasankolaei M, Pinheiro D, Nadine S, Mano JF. Strategies to decouple cell micro-scale and macro-scale environments for designing multifunctional biomimetic tissues. SOFT MATTER 2024; 20:6313-6326. [PMID: 39049813 DOI: 10.1039/d4sm00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.
Collapse
Affiliation(s)
| | - Diogo Pinheiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Kim J, Lee H, Lee G, Ryu D, Kim G. Fabrication of fully aligned self-assembled cell-laden collagen filaments for tissue engineering via a hybrid bioprinting process. Bioact Mater 2024; 36:14-29. [PMID: 38425743 PMCID: PMC10900255 DOI: 10.1016/j.bioactmat.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Cell-laden structures play a pivotal role in various tissue engineering applications, particularly in tissue restoration. Interactions between cells within bioprinted structures are crucial for successful tissue development and regulation of stem cell fate through intricate cell-to-cell signaling pathways. In this study, we developed a new technique that combines polyethylene glycol (PEG)-infused submerged bioprinting with a stretching procedure. This approach facilitated the generation of fully aligned collagen structures consisting of myoblasts and a low concentration (2 wt%) of collagen to efficiently encourage muscle tissue regeneration. By adjusting several processing parameters, we obtained biologically safe and mechanically stable cell-laden collagen filaments with uniaxial alignment. Notably, the cell filaments exhibited markedly elevated cellular activities compared to those exhibited by conventional bioprinted filaments, even at similar cell densities. Moreover, when we implanted structures containing adipose stem cells into mice, we observed a significantly increased level of myogenesis compared to that in normally bioprinted struts. Thus, this promising approach has the potential to revolutionize tissue engineering by fostering enhanced cellular interactions and promoting improved outcomes in regenerative medicine.
Collapse
Affiliation(s)
- JuYeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - Hyeongjin Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Niu R, Xin Q, Xu E, Yao S, Chen M, Liu D. Nanostarch-Stimulated Cell Adhesion in 3D Bioprinted Hydrogel Scaffolds for Cell Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38680043 DOI: 10.1021/acsami.4c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) bioprinting has great potential in the applications of tissue engineering, including cell culturing meat, because of its versatility and bioimitability. However, existing bio-inks used as edible scaffold materials lack high biocompatibility and mechanical strength to enable cell growth inside. Here, we added starch nanoparticles (SNPs) in a gelatin/sodium alginate (Gel/SA) hydrogel to enhance printing and supporting properties and created a microenvironment for adherent proliferation of piscine satellite cells (PSCs). We demonstrated the biocompatibility of SNPs for cells, with increasing 20.8% cell viability and 36.1% adhesion rate after 5 days of incubation. Transcriptomics analysis showed the mechanisms underlying the effects of SNPs on the adherent behavior of myoblasts. The 1% SNP group had a low gel point and viscosity for shaping with PSCs infusion and had a high cell number and myotube fusion index after cultivation. Furthermore, the formation of 3D muscle tissue with thicker myofibers was shown in the SNP-Gel/SA hydrogel by immunological staining.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qipu Xin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minxuan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| |
Collapse
|
6
|
Hasani-Sadrabadi MM, Yuan W, Ferreira LDAQ, Liu Z, Shen J, Sarrión P, Sharifi F, Malek-Khatabi A, Dashtimoghadam E, Yu B, Ansari S, Moshaverinia A. Precise Engineering of Growth Factor Presentation Using Extracellular Microenvironment-Mimicking Microfluidic Microparticles. ACS Biomater Sci Eng 2024; 10:1686-1696. [PMID: 38347681 DOI: 10.1021/acsbiomaterials.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| | - Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270, Brazil
| | - Zeyang Liu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Patricia Sarrión
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fatemeh Sharifi
- Department of Chemical Engineering, Sharif University of Technology, Tehran 11365, Iran
| | - Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran
| | - Erfan Dashtimoghadam
- Department of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States
- Center for Materials and Manufacturing Sciences, Troy University, Troy, Alabama 36082, United States
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Kim Y, Kang BE, Gariani K, Gariani J, Lee J, Kim HJ, Lee CW, Schoonjans K, Auwerx J, Ryu D. Loss of hepatic Sirt7 accelerates diethylnitrosamine (DEN)-induced formation of hepatocellular carcinoma by impairing DNA damage repair. BMB Rep 2024; 57:98-103. [PMID: 38303560 PMCID: PMC10910089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor [BMB Reports 2024; 57(2): 98-103].
Collapse
Affiliation(s)
- Yuna Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Baeki E. Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea, Gwangju 61005, Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva 1205, Korea
| | - Joanna Gariani
- Department of Radiology, Hirslanden Grangettes Clinic, Geneva 1224, Switzerland, Gwangju 61005, Korea
| | - Junguee Lee
- Department of Pathology, Konyang University, Daejeon 35365, Korea, Gwangju 61005, Korea
| | - Hyun-Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea, Gwangju 61005, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland, Gwangju 61005, Korea
| | - Johan Auwerx
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland, Gwangju 61005, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
8
|
Xiong J, Wang X, Li L, Li Q, Zheng S, Liu Z, Li W, Yan F. Low-Hysteresis and High-Toughness Hydrogels Regulated by Porous Cationic Polymers: the Effect of Counteranions. Angew Chem Int Ed Engl 2024; 63:e202316375. [PMID: 37997003 DOI: 10.1002/anie.202316375] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Service life and range of polymer materials is heavily reliant on their elasticity and mechanical stability under long-term loading. Slippage of chain segments under load leads to significant hysteresis of the hydrogels, limiting its repeatability and mechanical stability. Achieving the desired elasticity exceeding that of rubber is a great challenge for hydrogels, particularly when subjected to large deformations. Here, low-hysteresis and high-toughness hydrogels were developed through controllable interactions of porous cationic polymers (PCPs) with adjustable counteranions, including reversible bonding of PCP frameworks/polymer segments (polyacrylamide, PAAm) and counteranions/PAAm. This strategy reduces chain segment slippage under load, endowing the PCP-based hydrogels (PCP-gels) with good elasticity under large deformations (7 % hysteresis at a strain ratio of 40). Furthermore, due to the enlarged chain segments entanglement by PCP, the PCP-gels exhibit large strain (13000 %), significantly enhanced toughness (68 MJ m-3 ), high fracture energy (43.1 kJ m-2 ), and fatigue resistance. The unique properties of these elastic PCP-gels have promising applications in the field of flexible sensors.
Collapse
Affiliation(s)
- Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
van Loo B, Schot M, Gurian M, Kamperman T, Leijten J. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation. Adv Healthc Mater 2024; 13:e2300095. [PMID: 37793116 PMCID: PMC11468307 DOI: 10.1002/adhm.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/06/2023]
Abstract
3D cellular spheroids offer more biomimetic microenvironments than conventional 2D cell culture technologies, which has proven value for many tissue engineering applications. Despite beneficiary effects of 3D cell culture, clinical translation of spheroid tissue engineering is challenged by limited scalability of current spheroid formation methods. Although recent adoption of droplet microfluidics can provide a continuous production process, use of oils and surfactants, generally low throughput, and requirement of additional biofabrication steps hinder clinical translation of spheroid culture. Here, the use of clean (e.g., oil-free and surfactant-free), ultra-high throughput (e.g., 8.5 mL min-1 , 10 000 spheroids s-1 ), single-step, in-air microfluidic biofabrication of spheroid forming compartmentalized hydrogels is reported. This novel technique can reliably produce 1D fibers, 2D planes, and 3D volumes compartmentalized hydrogel constructs, which each allows for distinct (an)isotropic orientation of hollow spheroid-forming compartments. Spheroids produced within ink-jet bioprinted compartmentalized hydrogels outperform 2D cell cultures in terms of chondrogenic behavior. Moreover, the cellular spheroids can be harvested from compartmentalized hydrogels and used to build shape-stable centimeter-sized biomaterial-free living tissues in a bottom-up manner. Consequently, it is anticipated that in-air microfluidic production of spheroid-forming compartmentalized hydrogels can advance production and use of cellular spheroids for various biomedical applications.
Collapse
Affiliation(s)
- Bas van Loo
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Maik Schot
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Melvin Gurian
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
- IamFluidics B.V.De Veldmaat 17Enschede7522 NMThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| |
Collapse
|
10
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
11
|
Taravatfard AZ, Ceballos-Gonzalez C, Siddique AB, Bolivar-Monsalve J, Madadelahi M, Trujillo-de Santiago G, Moisés Alvarez M, Pramanick AK, Martinez Guerra E, Kulinsky L, Madou MJ, Martinez SO, Ray M. Nitrogen-functionalized graphene quantum dot incorporated GelMA microgels as fluorescent 3D-tissue Constructs. NANOSCALE 2023; 15:16277-16286. [PMID: 37650749 DOI: 10.1039/d3nr02612d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Biopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their in vivo behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels. Here, we introduce a microfluidic-based approach to generate nitrogen-functionalized graphene quantum dot (NGQD) incorporated gelatin methacryloyl (GelMA) hydrogel microspheres, capable of long-term monitoring while preserving or enhancing the other favorable features of 3D cell encapsulation. A multilayer droplet-based microfluidic device was designed and fabricated to make monodisperse NGQD-loaded GelMA hydrogel microspheres encapsulating skeletal muscle cells (C2C12). Control over the sizes of microspheres could be achieved by tuning the flow rates in the microfluidic device. Skeletal muscle cells encapsulated in these microgels exhibited high cell viability from day 1 (82.9 ± 6.50%) to day 10 (92.1 ± 3.90%). The NGQD-loaded GelMA microgels encapsulating the cells demonstrated higher metabolic activity compared to the GelMA microgels. Presence of sarcomeric α-actin was verified by immunofluorescence staining on day 10. A fluorescence signal was observed from the NGQD-loaded microgels during the entire period of the study. The investigation reveals the advantages of integrating NGQDs in microgels for non-invasive imaging and monitoring of cell-laden microspheres and presents new opportunities for future therapeutic applications.
Collapse
Affiliation(s)
- Aida Zahra Taravatfard
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | | | - Abu Bakar Siddique
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | | | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | | | - Eduardo Martinez Guerra
- Centro de Investigaciones en Materiales Avanzados, CIMAV Unidad Monterrey, Alianza Norte 202, Apodaca, Nuevo León, C.P. 66628, Mexico
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Marc J Madou
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Sergio O Martinez
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | - Mallar Ray
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
12
|
Boaks M, Roper C, Viglione M, Hooper K, Woolley AT, Christensen KA, Nordin GP. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration. MICROMACHINES 2023; 14:1589. [PMID: 37630125 PMCID: PMC10456398 DOI: 10.3390/mi14081589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.
Collapse
Affiliation(s)
- Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Connor Roper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kent Hooper
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
13
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
14
|
Lee J, Lee H, Jin EJ, Ryu D, Kim GH. 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. NPJ Regen Med 2023; 8:18. [PMID: 37002225 PMCID: PMC10066283 DOI: 10.1038/s41536-023-00292-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a highly effective technique for fabricating cell-loaded constructs in tissue engineering. However, the versatility of fabricating precise and complex cell-loaded hydrogels is limited owing to the poor crosslinking ability of cell-containing hydrogels. Herein, we propose an optic-fiber-assisted bioprinting (OAB) process to efficiently crosslink methacrylated hydrogels. By selecting appropriate processing conditions for the photo-crosslinking technique, we fabricated biofunctional cell-laden structures including methacrylated gelatin (Gelma), collagen, and decellularized extracellular matrix. To apply the method to skeletal muscle regeneration, cell-laden Gelma constructs were processed with a functional nozzle having a topographical cue and an OAB process that could induce a uniaxial alignment of C2C12 and human adipose stem cells (hASCs). Significantly higher degrees of cell alignment and myogenic activities in the cell-laden Gelma structure were observed compared with those in the cell construct that was printed using a conventional crosslinking method. Moreover, an in vivo regenerative potential was observed in volumetric muscle defects in a mouse model. The hASC-laden construct significantly induced greater muscle regeneration than the cell construct without topographical cues. Based on the results, the newly designed bioprinting process can prove to be highly effective in fabricating biofunctional cell-laden constructs for various tissue engineering applications.
Collapse
Affiliation(s)
- JaeYoon Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Kim W, Kim G. Hybrid cell constructs consisting of bioprinted cell-spheroids. Bioeng Transl Med 2023; 8:e10397. [PMID: 36925682 PMCID: PMC10013803 DOI: 10.1002/btm2.10397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Bioprinted cell constructs have been investigated for regeneration of various tissues. However, poor cell-cell interactions have limited their utility. Although cell-spheroids offer an alternative for efficient cell-cell interactions, they complicate bioprinting. Here, we introduce a new cell-printing process, fabricating cell-spheroids and cell-loaded constructs together without preparation of cell-spheroids in advance. Cells in mineral oil droplets self-assembled to form cell-spheroids due to the oil-aqueous interaction, exhibiting similar biological functions to the conventionally prepared cell-spheroids. By controlling printing parameters, spheroid diameter and location could be manipulated. To demonstrate the feasibility of this process, we fabricated hybrid cell constructs, consisting of endothelial cell-spheroids and stem cells loaded decellularized extracellular matrix/β-tricalcium phosphate struts for regenerating vascularized bone. The hybrid cell constructs exhibited strong angiogenic/osteogenic activities as a result of increased secretion of signaling molecules and synergistic crosstalk between the cells.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonSouth Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonSouth Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan UniversitySuwonSouth Korea
| |
Collapse
|
16
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Jo Y, Yeo MK, Dao T, Kwon J, Yi H, Ryu D. Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia. Front Oncol 2022; 12:942774. [PMID: 36059698 PMCID: PMC9428794 DOI: 10.3389/fonc.2022.942774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic cancer is one of the most fatal malignancies of the gastrointestinal cancer, with a challenging early diagnosis due to lack of distinctive symptoms and specific biomarkers. The exact etiology of pancreatic cancer is unknown, making the development of reliable biomarkers difficult. The accumulation of patient-derived omics data along with technological advances in artificial intelligence is giving way to a new era in the discovery of suitable biomarkers. Methods We performed machine learning (ML)-based modeling using four independent transcriptomic datasets, including GSE16515, GSE62165, GSE71729, and the pancreatic adenocarcinoma (PAC) dataset of the Cancer Genome Atlas. To find candidates for circulating biomarkers, we exported expression profiles of 1,703 genes encoding secretory proteins. Integrating three transcriptomic datasets into either a training or test set, ML-based modeling distinguishing PAC from normal was carried out. Another ML-model classifying long-lived and short-lived patients with PAC was also built to select prognosis-associated features. Finally, circulating level of SCG5 in the plasma was determined from the independent cohort (non-tumor = 25 and pancreatic cancer = 25). We also investigated the impact of SCG5 on adipocyte biology using recombinant protein. Results Three distinctive ML-classifiers selected 29-, 64- and 18-featured genes, recognizing the only common gene, SCG5. As per the prediction of ML-models, the SCG5 transcripts was significantly reduced in PAC and decreased further with the progression of the tumor, indicating its potential as a diagnostic as well as prognostic marker for PAC. External validation of SCG5 using plasma samples from patients with PAC confirmed that SCG5 was reduced significantly in patients with PAC when compared to controls. Interestingly, plasma SCG5 levels were correlated with the body mass index and age of donors, implying pancreas-originated SCG5 could regulate energy metabolism systemically. Additionally, analyses using publicly available Genotype-Tissue Expression datasets, including adipose tissue histology and pancreatic SCG5 expression, further validated the association between pancreatic SCG5 expression and the size of subcutaneous adipocytes in humans. However, we could not observe any definite effect of rSCG5 on the cultured adipocyte, in 2D in vitro culture. Conclusion Circulating SCG5, which may be associated with adipopenia, is a promising diagnostic biomarker for PAC.
Collapse
Affiliation(s)
- Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Jeongho Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Hyon‐Seung Yi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Hyon‐Seung Yi, ; Dongryeol Ryu,
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
- *Correspondence: Hyon‐Seung Yi, ; Dongryeol Ryu,
| |
Collapse
|
18
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Bae SJ, Jo Y, Cho MK, Jin JS, Kim JY, Shim J, Kim YH, Park JK, Ryu D, Lee HJ, Joo J, Ha KT. Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics. Front Endocrinol (Lausanne) 2022; 13:942368. [PMID: 36339397 PMCID: PMC9630743 DOI: 10.3389/fendo.2022.942368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a gynecological disease prevalent in women of reproductive age, and it is characterized by the ectopic presence and growth of the eutopic endometrium. The pathophysiology and diagnostic biomarkers of endometriosis have not yet been comprehensively determined. To discover molecular markers and pathways underlying the pathogenesis of endometriosis, we identified differentially expressed genes (DEGs) in three Gene Expression Omnibus microarray datasets (GSE11691, GSE23339, and GSE7305) and performed gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) network analyses. We also validated the identified genes via immunohistochemical analysis of tissues obtained from patients with endometriosis or healthy volunteers. A total of 118 DEGs (79 upregulated and 39 downregulated) were detected in each dataset with a lower (fold change) FC cutoff (log2|FC| > 1), and 17 DEGs (11 upregulated and six downregulated) with a higher FC cutoff (log2|FC| > 2). KEGG and GO functional analyses revealed enrichment of signaling pathways associated with inflammation, complement activation, cell adhesion, and extracellular matrix in endometriotic tissues. Upregulation of seven genes (C7, CFH, FZD7, LY96, PDLIM3, PTGIS, and WISP2) out of 17 was validated via comparison with external gene sets, and protein expression of four genes (LY96, PDLIM3, PTGIS, and WISP2) was further analyzed by immunohistochemistry and western blot analysis. Based on these results, we suggest that TLR4/NF-κB and Wnt/frizzled signaling pathways, as well as estrogen receptors, regulate the progression of endometriosis. These pathways may be therapeutic and diagnostic targets for endometriosis.
Collapse
Affiliation(s)
- Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, South Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jin-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of Medicine, Busan, South Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jang-Kyung Park
- Department of Korean Medicine Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Yangsan, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| |
Collapse
|