1
|
Pirzada BM, AlMarzooqi F, Qurashi A. Ultrasonic treatment-assisted reductive deposition of Cu and Pd nanoparticles on ultrathin 2D Bi 2S 3 nanosheets for selective electrochemical reduction of CO 2 into C 2 compounds. ULTRASONICS SONOCHEMISTRY 2024; 112:107189. [PMID: 39700885 DOI: 10.1016/j.ultsonch.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
In this work, we have ultrasonically deposited Cu and Pd nanoparticles on Bi2S3 nanoparticles, prepared using an ultrasonication assisted hydrothermal method. We implemented intense ultrasonic waves bearing frequency of 20 kHz and power of 750 W at the acoustic wavelength of 100 mm to reduce Cu and Pd nanoparticles on the Bi2S3 surface. The XRD confirmed the formation of highly crystalline Bi2S3 nanoparticles with a pure orthorhombic phase and the deposition of copper (Cuo) and palladium (Pdo) nanoparticles was indicated by the strengthening and broadening of the peaks. XPS also confirmed the formation of Cuo and Pdo nanoparticles on Bi2S3. The Transmission Electron Microscopy (TEM) also exhibited the deposition of Cu and Pd nanoparticles on the Bi2S3 nanosheets which was further confirmed using high resolution TEM analysis. The electrochemical CO2 reduction by Cu-Pd/Bi2S3 electrocatalyst using Cu foam as the conducting support led to the formation of acetaldehyde and ethylene as the major products. The rate of formation of ethylene was found to be 488.5 μ mol g-1h-1 at an applied potential of -0.6 V (vs. RHE), with the best Faradaic efficiency of 57.09 % at -0.4 V (vs. RHE). Among the liquid phase products, acetaldehyde was the major product showing the maximum Faradaic efficiency of 6.473 % at -0.2 V (vs. RHE), with a total formation rate of 64.27 μ mol g-1h-1. The results revealed that the Cu-Pd/Bi2S3 electrocatalyst was more selective to C2 products while the pure Bi2S3 nanoparticles majorly produced C1 compounds.
Collapse
Affiliation(s)
- Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788.
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
2
|
Shan J, Yin X, Liu S, Gong W, Bai Y, Du T, Sun J, Zhang D, Gu Y, Wang J. Defect-Engineering-Induced Vacancy-Rich Bi 2S 3-x@AuNPs with Enhanced Photothermal Activity for Sensitive Bimodal-Type Gentamicin Monitoring. Anal Chem 2024; 96:18564-18573. [PMID: 39508731 DOI: 10.1021/acs.analchem.4c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
One of the most promising approaches to effectively modulate the performance of immunochromatography (ICA) is the rational design of nanomaterials. It is anticipated to facilitate highly sensitive ICA analysis by introducing and controlling the internal defect structures of nanomaterials. Herein, we designed Bi2S3-x@AuNPs with deep-level defect properties, revealing that these deep defects act as electron-hole nonradiative complex centers to promote phonon production, ultimately leading to photothermal analytical performance in ICA. By effectively regulating the defect density, the assay showed extraordinary colorimetric intensity, photothermal performance, and stability, which were conducive to constructing sensitive ICA. With a proof-of-concept for gentamicin (Gen), the limit of detection (LOD) was determined to be 0.0358 ng mL-1, with overall recoveries ranging from 84.40% to 108.30% in both milk and milk powder samples. It demonstrates the importance of the rational design of internal defect structures to improve analytical performance and broaden the application of ICA.
Collapse
Affiliation(s)
- Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Weijie Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yunyan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
3
|
Yu H, Zhao Y, Zhang J, Liu Y, Zheng X, Fan Q, Duan Z, Guo X. Coordination Regulation Strategy in Fabricating Bi 2S 3@CNFs Composites with Uniform Dispersion for Robust Sodium Storage. Inorg Chem 2024; 63:21441-21449. [PMID: 39453442 DOI: 10.1021/acs.inorgchem.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
To solve large volume change and low conductivity of Bi2S3-based anodes, a coordination regulation strategy is proposed to prepare Bi2S3 nanoparticles dispersed in carbon fiber (Bi2S3@CNF) composites. It has been discovered that introducing trimesic acid as a ligand can significantly improve the loading and dispersion of Bi3+ in polyacrylonitrile fibers. The results exhibit that Bi2S3 nanoparticles of 200-300 nm are uniformly anchored on the superficial surface layer of CNFs, and Bi2S3 nanoparticles of about 20 nm are evenly dispersed in the interior of CNFs. Assessed as sodium-ion batteries' anode material, the discharge capacity of the Bi2S3@CNF anode in the second cycle is 669.3 mAh g-1 at 0.1 A g-1 and still retains 620.2 mAh g-1 after 100 cycles, with the capacity retention rate of 92.7%. Even at 0.5 A g-1, the specific capacity of the second cycle is 432.99 mAh g-1, which still keeps 400.9 mAh g-1 after 800 cycles, with a retention rate of 92.5%. The excellent cycle stability is mainly attributed to the uniform distribution of small Bi2S3 nanoparticles in CNFs providing abundant active sites, preventing side reactions, relieving volume expansion, improving the electrical conductivity, and accelerating the electrochemical reaction kinetics.
Collapse
Affiliation(s)
- Haiwei Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yafei Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuanjun Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Qianqian Fan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Zhongyao Duan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
4
|
Wang Y, Wu T, Lu Y, Zhang W, Li Z. In Situ Synthesis of MoO 3 by Surface Oxidation of Mo 2C (MXene) for Stable Near-Surface Reactions in Aqueous Aluminum-Ion Battery. Angew Chem Int Ed Engl 2024:e202416032. [PMID: 39432358 DOI: 10.1002/anie.202416032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Molybdenum trioxide (MoO3) is a promising positive electrode material for aqueous aluminum-ion batteries (AAIBs) due to its high theoretical capacity. However, MoO3 faces several challenges in an aqueous electrolyte, such as easy dissolution of reaction products, volume expansion, and low conductivity, which severely limit its application in aqueous batteries. In this work, we effectively increased the overall conductivity of the electrode by in situ growing MoO3 on the Mo2C MXene layer. MXene can effectively inhibit the dissolution and structural loss of MoO3 reaction products. Additionally, the coordination effect of Mo2C and MoO3 achieves a stable near-surface reaction on the MXene laminates, resulting in the Mo2C/MoO3 composite exhibiting excellent aluminum storage properties (123.5 mAh/g after 200 cycles at 0.4 A/g). The energy storage mechanism of H+/Al3+ co-insertion/extraction was elucidated through ex situ characterization, and the promotion effect of Mo2C on MoO3 reaction kinetics was verified by density functional theory (DFT) calculations. This work provides new insights into improving the stability of AAIBs cathodes and extends the application of Mo-based MXene in aqueous batteries.
Collapse
Affiliation(s)
- Yi Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| | - Tanci Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| | - Yong Lu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| |
Collapse
|
5
|
Guo H, Wang H, Ma F, Lan J, Yu Y, Yuan H, Yang X. Realizing Ultrahigh Cycle Life Anode for Sodium-Ion Batteries through Heterostructure Design and Introducing Electro Active Polymer Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54028-54037. [PMID: 39348096 DOI: 10.1021/acsami.4c13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bi2S3 has attracted increasing attention in sodium-ion batteries (SIBs) for its high theoretical capacity and low discharge platform. However, the sodium storage performance of Bi2S3 is limited by poor electrical conductivity and volume expansion during cycling. Herein, we report a special polypyrrole (PPy)-coated MoS2/Bi2S3 (MBS@PPy) heterostructure composite obtained by hydrothermal reaction as an anode material for SIB. As a result, the MBS@PPy composites demonstrate exceptional electrochemical performance in SIB, exhibiting a high capacity of 361.1 mA h g-1 at 10 A g-1 and showcasing remarkable rate performance. Even under a high current density of 35 A g-1, the specific capacity remains stable at 280 mA h g-1 after 2,000 cycles. Furthermore, a successfully assembled Na3V2(PO4)3//MBS@PPy sodium-ion full cell can achieve an impressive specific capacity of approximately 400 mA h g-1 after 300 cycles at 0.5 A g-1. In MBS@PPy composites, the polypyridine coating not only improves the interfacial conductivity of nanorods but also effectively inhibits the agglomeration between nanorods due to large volume changes. The MoS2 heterostructure further inhibits the coarsening of the internal structure, improves electron transport and reaction kinetics, and increases the rate capability of the material. This work provides an effective strategy to develop energy storage materials with superior electrochemical properties.
Collapse
Affiliation(s)
- Huanhuan Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haihong Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - FengXin Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Yunhua Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haocheng Yuan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Zhang X, Xie J, Tang Y, Lu Z, Hu J, Wang Y, Cao Y. Oxygen Self-Doping Bi 2S 3@C Spheric Successfully Enhanced Long-Term Performance in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52423-52431. [PMID: 39315712 DOI: 10.1021/acsami.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
High theoretical capacity of Bi2S3 propels it toward an ideal anode material for lithium-ion batteries (LIBs); however, rapid capacity attenuation and poor long-term stability are major barriers to widespread application. In this work, an oxygen self-doping strategy was utilized to synthesize O-Bi2S3@C, significantly increasing the amount of active sites for lithium-ion storage. Meanwhile, sulfur vacancies were formed to improve the electrical conductivity and ionic transport efficiency, enhance the long-term stability, and accelerate the electrochemical kinetics of Bi2S3@C. O-BSC-S1:3 anode exhibits a reversible capacity of 673.1 mAh g-1 at 0.2 A g-1. It retains a long-term capacity of 596.3 mAh g-1 over 1100 cycles at a high density of 3 A g-1 in LIBs. Moreover, the installed O-Bi2S3@C//LiCoO2 full battery offers exceptional reversible capacity and remarkable cyclability (325.2 mAh g-1 after 200 cycles) at 0.2 A g-1. The combined strategy of oxygen self-doping and sulfur vacancy effectively enhances the reversible capacity and cycling life of Bi2S3, providing an approach for the design of high-performance transition metal sulfide anodes for LIBs.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Yakun Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Yang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center for Intelligent Manufacturing of Functional Chemicals, Ministry of Education, Shandong Normal University, Jinan, Shandong Province 250014, China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| |
Collapse
|
7
|
Du Y, Wang Z, Tian M, Ma H, Li DS, Zhang W, Yang HY, Chen S. Interfacial Coupling toward Bismuth Sulfide/MXene Heterostructures Empowering Reversible Magnesium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44636-44644. [PMID: 39146398 DOI: 10.1021/acsami.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bismuth-based compounds based on conversion-alloying reactions of multielectron transfer have attracted extensive attention as alternative anode candidates for rechargeable magnesium batteries (rMBs). However, the inadequate magnesium storage capability induced by the sluggish kinetics, poor reversibility, and terrible structural stability impedes their practical utilization. Herein, monodispersed Bi2S3 anchored on MXene has been prepared via a simple self-assembly strategy to induce the interfacial bonding of Ti-S and Ti-O-Bi. Unique superiority, including good electrical conductivity, high mechanical strength, and rapid charge transfer, is cleverly integrated together in the Bi2S3/MXene heterostructures, which endowed heterostructures with enhanced magnesium storage performance. Density functional theory calculations combined with kinetic behavior analyses confirm the favorable charge transfer and low ion diffusion barrier in hybrids. Furthermore, a stepwise insertion-conversion-alloying reaction mechanism is revealed in depth by ex situ investigations, which may also account for promoting performance. This work provides significant inspirations for constructing ingenious multicompositional hybrids by strong interfacial coupling engineering toward high-performance energy storage devices.
Collapse
Affiliation(s)
- Yibo Du
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Material, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Miao Tian
- Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Heping Ma
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Centre for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Centre for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
Zhang W, Sun Y, Ren Z, Zhao Y, Yao Z, Lei Q, Si J, Li Z, Ren X, Li X, Li A, Wen W, Zhu D. In Situ Formed Amorphous Bismuth Sulfide Cathodes with a Self-Controlled Conversion Storage Mechanism for High Performance Hybrid Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304146. [PMID: 38010981 PMCID: PMC10787086 DOI: 10.1002/advs.202304146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Conversion-type electrodes offer a promising multielectron transfer alternative to intercalation hosts with potentially high-capacity release in batteries. However, the poor cycle stability severely hinders their application, especially in aqueous multivalence-ion systems, which can fundamentally impute to anisotropic ion diffusion channel collapse in pristine crystals and irreversible bond fracture during repeated conversion. Here, an amorphous bismuth sulfide (a-BS) formed in situ with unprecedentedly self-controlled moderate conversion Cu2+ storage is proposed to comprehensively regulate the isotropic ion diffusion channels and highly reversible bond evolution. Operando synchrotron X-ray diffraction and substantive verification tests reveal that the total destruction of the Bi─S bond and unsustainable deep alloying are fully restrained. The amorphous structure with robust ion diffusion channels, unique self-controlled moderate conversion, and high electrical conductivity discharge products synergistically boosts the capacity (326.7 mAh g-1 at 1 A g-1 ), rate performance (194.5 mAh g-1 at 10 A g-1 ), and long-lifespan stability (over 8000 cycles with a decay rate of only 0.02 ‰ per cycle). Moreover, the a-BS Cu2+ ‖Zn2+ hybrid ion battery can well supply a stable energy density of 238.6 Wh kg-1 at 9760 W kg-1 . The intrinsically high-stability conversion mechanism explored on amorphous electrodes provides a new opportunity for advanced aqueous storage.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanhe Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhiguo Ren
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuanxin Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeying Yao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qi Lei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jingying Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaochuan Ren
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Shandong, 266071, China
| | - Xiaolong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Aiguo Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wen Wen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Daming Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
9
|
Qiu Z, Lin X, Lei Y, Zhu J, Sa R, Chen Y. Contactless photoelectrochemical biosensors based on hierarchical MXene/Bi 2S 3 nanosheets with the branched hybridization chain reaction. Biosens Bioelectron 2024; 243:115764. [PMID: 37862759 DOI: 10.1016/j.bios.2023.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Ethyl carbamate, a substance frequently occurring in fermented foods, seriously affects people's health; however, poor sensitivity constrains the development of ethyl carbamate sensors. In this work, hierarchical Bi2S3/MXene nanosheets were synthesized using a hydrothermal method, and experimentally their coupled UV light is an efficient NH3 sensing material. Meanwhile, the density functional theory (DFT) confirms that the MXene/Bi2S3 nanosheet interface has an excellent ability to adsorb NH3, resulting in a change of photocurrent. As a proof-of-concept, a highly sensitive ethyl carbamate photoelectrochemical (PEC) biosensor was constructed based on the ammonia generation strategy of glutamate dehydrogenase coupled to the branched hybridization chain reaction (bHCR). Specifically, the target-triggered bHCR enriches a large number of enzyme-encapsulated liposomes, while the enzymatic NH3-generation reaction will cause a change in the Bi2S3/MXene photocurrent, which completes the target detection process. Under optimal conditions, the constructed PEC biosensors exhibited superior analytical performance toward ethyl carbamate in the range of 0.01 μg/mL to 1 μg/mL and limit of detection (LOD) down to 0.001 μg/mL. In addition, it offers an effective method for food safety monitoring due to its excellent stability, fast response, and maneuverability on real samples (red wine, yellow wine, and brandy).
Collapse
Affiliation(s)
- Zhenli Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xintong Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yufen Lei
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Jinman Zhu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Rongjian Sa
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
10
|
Yuan G, Ge H, Shi W, Liu J, Zhang Y, Wang X. Hybrid Sub-1 nm Nanosheets of Co-assembled MnZnCuO x and Polyoxometalate Clusters as Anodes for Li-ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202309934. [PMID: 37551751 DOI: 10.1002/anie.202309934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Transition metal oxide (TMO) anode materials in lithium-ion batteries (LIBs) usually suffer from serious volume expansion leading to the pulverization of structures, further giving rise to lower specific capacity and worse cycling stability. Herein, by introducing polyoxometalate (POM) clusters into TMOs and precisely controlling the amount of POMs, the MnZnCuOx -phosphomolybdic acid hybrid sub-1 nm nanosheets (MZC-PMA HSNSs) anode is successfully fabricated, where the special electron rich structure of POMs is conducive to accelerating the migration of lithium ions on the anode to obtain higher specific capacity, and the non-covalent interactions between POMs and TMOs make the HSNSs possess excellent structural and chemical stability, thus exhibiting outstanding electrochemical performance in LIBs, achieving a high reversible capacity (1157 mAh g-1 at 100 mA g-1 ) and an admirable long-term cycling stability at low and high current densities.
Collapse
Affiliation(s)
- Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Huaiyun Ge
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Junli Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
11
|
Zou Z, Yu Z, Chen C, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J. High-Performance Alkali Metal Ion Storage in Bi 2Se 3 Enabled by Suppression of Polyselenide Shuttling Through Intrinsic Sb-Substitution Engineering. ACS NANO 2023. [PMID: 37428997 DOI: 10.1021/acsnano.3c03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Bismuth selenide holds great promise as a kind of conversion-alloying-type anode material for alkali metal ion storage because of its layered structure with large interlayer spacing and high theoretical specific capacity. Nonetheless, its commercial development has been significantly hammered by the poor kinetics, severe pulverization, and polyselenide shuttle during the charge/discharge process. Herein, Sb-substitution and carbon encapsulation strategies are simultaneously employed to synthesize SbxBi2-xSe3 nanoparticles decorated on Ti3C2Tx MXene with encapsulation of N-doped carbon (SbxBi2-xSe3/MX⊂NC) as anodes for alkali metal ion storage. The superb electrochemical performances could be assigned to the cationic displacement of Sb3+ that effectively inhibits the shuttling effect of soluble polyselenides and the confinement engineering that alleviates the volume change during the sodiation/desodiation process. When used as anodes for sodium- and lithium-ion batteries, the Sb0.4Bi1.6Se3/MX⊂NC composite exhibits superior electrochemical performances. This work offers valuable guidance to suppress the shuttling of polyselenides/polysulfides in high-performance alkali metal ion batteries with conversion/alloying-type transition metal sulfide/selenide anode materials.
Collapse
Affiliation(s)
- Zhengguang Zou
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhiqi Yu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chi Chen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kai Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ke Ye
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guiling Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dianxue Cao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Yan
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
12
|
Carrasco D, García-Dalí S, Villar-Rodil S, Munuera JM, Raymundo-Piñero E, Paredes JI. NbSe 2 Nanosheets/Nanorolls Obtained via Fast and Direct Aqueous Electrochemical Exfoliation for High-Capacity Lithium Storage. ACS APPLIED ENERGY MATERIALS 2023; 6:7180-7193. [PMID: 37448979 PMCID: PMC10337822 DOI: 10.1021/acsaem.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023]
Abstract
Layered transition-metal dichalcogenides (LTMDs) in two-dimensional (2D) form are attractive for electrochemical energy storage, but research efforts in this realm have so far largely focused on the best-known members of such a family of materials, mainly MoS2, MoSe2, and WS2. To exploit the potential of further, currently less-studied 2D LTMDs, targeted methods for their production, preferably by cost-effective and sustainable means, as well as control over their nanomorphology, are highly desirable. Here, we report a quick and straightforward route for the preparation of 2D NbSe2 and other metallic 2D LTMDs that relies on delaminating their bulk parent solid under aqueous cathodic conditions. Unlike typical electrochemical exfoliation methods for 2D materials, which generally require an additional processing step (e.g., sonication) to complete delamination, the present electrolytic strategy yielded directly exfoliated nano-objects in a very short time (1-2 min) and with significant yields (∼16 wt %). Moreover, the dominant morphology of the exfoliated 2D NbSe2 products could be tuned between rolled-up nanosheets (nanorolls) and unfolded nanosheets, depending on the solvent where the nano-objects were dispersed (water or isopropanol). This rather unusual delamination behavior of NbSe2 was explored and concluded to occur via a redox mechanism that involves some degree of hydrolytic oxidation of the material triggered by the cathodic treatment. The delamination strategy could be extended to other metallic LTMDs, such as NbS2 and VSe2. When tested toward electrochemical lithium storage, electrodes based on the exfoliated NbSe2 products delivered very high capacity values, up to 750-800 mA h g-1 at 0.5 A g-1, where the positive effect of the nanoroll morphology, associated to increased accessibility of the lithium storage sites, was made apparent. Overall, these results are expected to expand the availability of fit-for-purpose 2D LTMDs by resorting to simple and expeditious production strategies of low environmental impact.
Collapse
Affiliation(s)
- Daniel
F. Carrasco
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sergio García-Dalí
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
- CNRS,
CEMHTI UPR3079, Univ. Orléans, 1D Avenue de la Recherche Scientifique, Orléans 45071, France
| | - Silvia Villar-Rodil
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - José M. Munuera
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | | | - Juan I. Paredes
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| |
Collapse
|
13
|
Liu H, Li N, Zhang S, Wang J, Du Y, Zhang W. Design of Gradient Ti Reconstituted Fe 2O 3 Anodes with Enhanced Lithium Affinity Modulated Electronic Structures: First-Principles Calculations and Experiment Verification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23160-23169. [PMID: 37129513 DOI: 10.1021/acsami.3c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-performance conversion transition metal oxides are strong candidates for advanced anode materials for lithium-ion batteries. However, the poor intrinsic conductivity and the large volume changes during battery operation are important constraints to its practical application. The heterogeneous atom doping strategy is an important way to modulate the electronic structure and surface states of the host materials. Herein, theoretical calculations reveal that heteroatomic Ti doping and its ionic or electronic compensation mechanisms can well modulate the electronic structure of Fe2O3 and change the surface Li-ion affinity. A Ti concentration gradient modification strategy for Fe2O3 is proposed to construct high-performance electrode materials. As a Li-ion battery anode, Ti concentration gradient-doped Fe2O3 achieves excellent long-cycle stability, with a reversible capacity of 1001.9 mAh g-1 at 1 A g-1 for 1200 cycles, and even maintains a reversible specific capacity compared to the theoretical capacity of commercial graphite electrodes at 2 A g-1 for 2000 cycles. This combination of theoretical calculations and experiments offers ways to intelligently design and develop alkali metal ion batteries.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
| | - Na Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
| | - Shiwei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, PR China
| | - Jianchuan Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, PR China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, PR China
| | - Weibin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
| |
Collapse
|
14
|
Nie Y, Wang P, Wang S, Ma Q, Su X. Accurate Capture and Identification of Exosomes: Nanoarchitecture of the MXene Heterostructure/Engineered Lipid Layer. ACS Sens 2023; 8:1850-1857. [PMID: 37114431 DOI: 10.1021/acssensors.3c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Recently, exosome detection has become an important breakthrough in clinical diagnosis. However, the effective capture and accurate identification of cancer exosomes in a complex biomatrix are still a tough task. Especially, the large size and non-conductivity of exosomes are not conducive to highly sensitive electrochemical or electrochemiluminescence (ECL) detection. Therefore, we have developed a Ti3C2Tx-Bi2S3-x heterostructure/engineered lipid layer-based nanoarchitecture to overcome the limitations. The engineered lipid layer not only specifically captured and efficiently fused CD63 positive exosomes but also showed excellent antifouling property in the biological matrix. Moreover, the MUC1 aptamer-modified Ti3C2Tx-Bi2S3-x heterostructure further identified and covered the gastric cancer exosomes that have been trapped in the engineered lipid layer. In the self-luminous Faraday cage-type sensing system, the Ti3C2Tx-Bi2S3-x heterostructure with sulfur vacancies extended the outer Helmholtz plane and amplified the ECL signal. Therefore, this sensor can be used to detect tumor exosomes in ascites of cancer patients without additional purification. It provides a new pathway to detect exosomes and other large-sized vesicles with high sensitivity.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuo Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Meng N, Xu P, Wen C, Liu H, Gao C, Shen XC, Liang H. Near-infrared-II-activatable sulfur-deficient plasmonic Bi 2S 3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci 2023; 644:437-453. [PMID: 37126893 DOI: 10.1016/j.jcis.2023.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bismuth sulfide is widely used as an n-type semiconductor material in photocatalytic reactions. However, bismuth sulfide has poor absorption in the near-infrared region and low charge separation efficiency, limiting its application in phototherapy and sonodynamic therapy (SDT). In this study, we successfully synthesized an "all-in-one" phototheranostic nanoplatform, namely Bi2S3-x-Au@HA, based on a single second near-infrared (NIR-II) light-responsive Schottky-type Bi2S3-x-Au heterostructure for photoacoustic (PA) imaging-guided SDT-enhanced photodynamic therapy (PDT)/photothermal therapy (PTT). Bi2S3-x-Au@HA exhibits excellent NIR-II plasmonic and photothermal properties, rendering it with NIR-II PA imaging capabilities for accurate diagnosis. Additionally, the high-density sulfur vacancies constructed on the Bi2S3 surface cause it to possess a reduced band gap (1.21 eV) that can act as an electron trap. Using the density functional theory, we confirmed that the light and ultrasound-induced electrons are more likely to aggregate on the Au nanoparticle surface through interfacial self-assembly, which promotes electron-hole separation and enhances photocatalytic activity with increased reactive oxygen species (ROS) generation. With a further modification of hyaluronic acid (HA), Bi2S3-x-Au@HA can selectively target cancer cells through HA and CD44 protein interactions. Both in vitro and in vivo experiments demonstrated that Bi2S3-x-Au@HA effectively suppressed tumor growth through SDT-enhanced PTT/PDT under a single NIR-II laser and ultrasound irradiation with negligible toxicity. Our findings provide a framework for fabricating Schottky-type heterostructures as single NIR-II light-responsive nanotheranostic agents for PA imaging-guided cancer phototherapy.
Collapse
Affiliation(s)
- Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
16
|
Facile Synthesis of Microwave-Etched Ti3C2 MXene/Activated Carbon Hybrids for Lithium-Ion Battery Anodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Wu G, Wu X, Zhu X, Xu J, Bao N. Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS NANO 2022; 16:10130-10155. [PMID: 35839097 DOI: 10.1021/acsnano.2c02841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fiber-based supercapacitors (F-SCs) have inspired widespread interest in the fields of wearable technology, energy, and carbon neutralization due to their highly deformable flexibility, fast charging/discharging capability, long-term stability, and energy conservation ability. In this review, we summarize the latest developments for fabricating fibrous electrodes of F-SCs where advanced micro two-dimensional (2D) building blocks (e.g., MXene and graphene) are chemically assembled and constructed into ordered mesofibers and multifunctional macrofabrics. Diverse fundamental principles of 2D hybrid nanosheets with respect to surface controls, pseudocapacitive modifications, and microstructural manipulations, promoting rapid electron transfer and charge conduction, are introduced. Additionally, various spinning methods for assembling and fabricating sophisticated fibers with advanced nano/microstructures, including hierarchical skeletons, anisotropic backbones, surface/entire porous frameworks, and vertical-aligned networks, for boosting ionic kinetic transport/storage are presented. Likewise, the structure-activity relationships between the porous structure and electrochemical performance are clarified. Moreover, multifunctional fabrics in terms of high flexibilities/strengths, superior electrical conductivities, and stabilized operations, which realize large energy density, deformable capability, and robust stability under harsh conditions, are emphasized. In particular, the potential power-supply applications, including flexible electronic devices, self-powered functions, and energy-sensor systems, are highlighted. Finally, a short conclusion and outlook, along with the current challenges and future opportunities of next-generation F-SCs, are proposed.
Collapse
Affiliation(s)
- Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Xingjiang Wu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - XiaoLin Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
18
|
Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the proof-of-concept of molecularly imprinted polymer (MIP) functionalized Bi2S3/Ti3C2TX MXene nanocomposites for photoelectrochemical (PEC)/electrochemical (EC) dual-mode sensing of chlorogenic acid (CGA). Specifically, the in-situ growth of the Bi2S3/Ti3C2TX MXene served as a transducer substrate for molecularly imprinted polymers such as PEC and EC signal generators, due to its high surface area, suitable bandwidth and abundant active sites. In addition, the chitosan as a binder was encapsulated into MIP by means of phase inversion on a fluorine-doped tin dioxide (FTO) electrode. In the determination of CGA as an analytical model, the dual-mode sensor based on MIP functionalized Bi2S3/Ti3C2TX MXene nanocomposites had good selectivity, excellent stability and acceptable reproducibility, which displayed a linear concentration range from 0.0282 μM to 2824 μM for the PEC signal and 0.1412 μM to 22.59 μM for the EC signal with a low detection limit of 2.4 nM and 43.1 nM, respectively. Importantly, two dual-response mode with different transduction mechanisms could mutually conform to dramatically raise the reliability and accuracy of detection compared to single-mode detection. This work is a breakthrough for the design of dual-mode sensors and will provide a reasonable basis for the construction of dual-mode sensor platforms.
Collapse
|