1
|
Turnley JW, Agrawal R. Solution processed metal chalcogenide semiconductors for inorganic thin film photovoltaics. Chem Commun (Camb) 2024; 60:5245-5269. [PMID: 38683572 DOI: 10.1039/d4cc01057d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Thin film photovoltaics are a key part of both current and future solar energy technologies and have been heavily reliant on metal chalcogenide semiconductors as the absorber layer. Developing solution processing methods to deposit metal chalcogenide semiconductors offers the promise of low-cost and high-throughput fabrication of thin film photovoltaics. In this review article we lay out the key chemistry and engineering that has propelled research on solution processing of metal chalcogenide semiconductors, focusing on Cu(In,Ga)(S,Se)2 as a model system. Further, we expand on how this methodology can be extended to other emerging metal chalcogenide materials like Cu2ZnSn(S,Se)4, copper pnictogen sulfides, and chalcogenide perovskites. Finally, we discuss future opportunities in this field of research, both considering fundamental and applied perspectives. Overall, this review can serve as a roadmap to researchers tackling challenges in solution processed metal chalcogenides to better accelerate progress on thin films photovoltaics and other semiconductor applications.
Collapse
Affiliation(s)
- Jonathan W Turnley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Rakesh Agrawal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
2
|
Lin W, Zuo X, Ma C, Xia P, Bian H, Liang G, Hu J, Song Z, Mao W, Bao K. Sn 0.1-Li 4Ti 5O 12/C as a promising cathode material with a large capacity and high rate performance for Mg-Li hybrid batteries. Dalton Trans 2024; 53:2055-2064. [PMID: 38179885 DOI: 10.1039/d3dt02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The development prospects of conventional Li-ion batteries are limited by the paucity of Li resources. Mg-Li hybrid batteries (MLIBs) combine the advantages of Li-ion batteries and magnesium batteries. Li+ can migrate rapidly in the cathode materials, and the Mg anode has the advantage of being dendrite-free. In this study, a type of Li4Ti5O12 composite material doped with Sn4+ and a conductive carbon skeleton (Li4Ti4.9Sn0.1O12/C, Sn0.1-LTO/C) was prepared by a simple one-pot sol-gel method. The doped Sn4+ replaces part of Ti4+ in the crystal lattice, which makes Ti3+ require charge compensation, thus improving the ionic conductivity. The intervention of the conductive carbon skeleton further improves the conductivity of the Sn0.1-LTO/C composite material. The performance of Sn0.1-LTO/C as the cathode of MLIBs is explored. The initial discharge capacity was 159.1 mA h g-1 at 0.5 C, and it was maintained at 105 mA h g-1 even after 500 cycles. The excellent electrochemical performance is attributed to a small amount of Sn doping and the involvement of the conductive carbon skeleton, which indicated that the Sn0.1-LTO/C composite material provides great potential application in MLIBs.
Collapse
Affiliation(s)
- Wei Lin
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Xingwei Zuo
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Chao Ma
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Peng Xia
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Haowei Bian
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Guobing Liang
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Jianbing Hu
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Zhongcheng Song
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Wutao Mao
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Keyan Bao
- Resource Environment & Clean Energy Research Center, School of chemistry and chemical engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
3
|
Cheng X, Li D, Jiang Y, Huang F, Li S. Advances in Electrochemical Energy Storage over Metallic Bismuth-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:21. [PMID: 38203875 PMCID: PMC10780295 DOI: 10.3390/ma17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. Herein, we systematically review the application and development of metallic Bi-based anode in lithium ion batteries and beyond-lithium ion batteries. The reaction mechanism, modification methodologies and their relationship with electrochemical performance are discussed in detail. Additionally, owing to the unique physicochemical properties of Bi and Bi-based alloys, some innovative investigations of metallic Bi-based materials in alkali metal anode modification and sulfur cathodes are systematically summarized for the first time. Following the obtained insights, the main unsolved challenges and research directions are pointed out on the research trend and potential applications of the Bi-based materials in various energy storage fields in the future.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Dongjun Li
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China;
| | - Yu Jiang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Fangzhi Huang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Shikuo Li
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| |
Collapse
|
4
|
Chen S, Du Y, Ma H, Wang Z, Fan S, Zhang W, Yang HY. Unusual Hybrid Magnesium Storage Mechanism in a New Type of Bi 2O 2CO 3 Anode. NANO LETTERS 2023; 23:9788-9795. [PMID: 37642519 DOI: 10.1021/acs.nanolett.3c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bismuth and bismuth-based compounds have been extensively studied as anodes as prospective candidates for rechargeable magnesium batteries (rMBs). However, the unsatisfactory magnesium-storage capability caused by the typical alloying reaction mechanism severely restricts the practical option for anodes in rMBs. Herein, polyaniline intercalated Bi2O2CO3 nanosheets are prepared by an effective interlayer engineering strategy to fine-tune the layer structure of Bi2O2CO3, achieving enhanced magnesium-storage capacity, rate performance, as well as long cycle life. Excitedly, a stepwise insertion-conversion-alloying reaction is aroused to stabilize the performance, which is elucidated by in/ex situ investigations. Moreover, first-principles calculations confirm that the coupling of Bi2O2CO3 and polyaniline not only increases the conductivity induced by the strong density of states and the interior self-built-in electric field but also significantly reduces the energy barrier of Mg shuttles. Our findings shed light on exploring new electrode materials with an appropriate working mechanism toward high-performance rechargeable batteries.
Collapse
Affiliation(s)
- Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yibo Du
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Heping Ma
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Material, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shuang Fan
- College of Chemistry and Environmental Engineering, International Joint Research Center for Molecular Science, Shenzhen University, Shenzhen 518060, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| |
Collapse
|
5
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
6
|
Lin H, Yu J, Chen F, Li R, Xia BY, Xu ZL. Visualizing the Interfacial Chemistry in Multivalent Metal Anodes by Transmission Electron Microscopy. SMALL METHODS 2023; 7:e2300561. [PMID: 37415543 DOI: 10.1002/smtd.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Indexed: 07/08/2023]
Abstract
Multivalent metal batteries (MMBs) have been considered potentially high-energy and low-cost alternatives to commercial Li-ion batteries, thus attracting tremendous research interest for energy-storage applications. However, the plating and stripping of multivalent metals (i.e., Zn, Ca, Mg) suffer from low Coulombic efficiencies and short cycle life, which are largely rooted in the unstable solid electrolyte interphase. Apart from exploring new electrolytes or artificial layers for robust interphases, fundamental works on deciphering interfacial chemistry have also been conducted. This work is dedicated to summarizing the state-of-the-art advances in understanding the interphases for multivalent metal anodes revealed by transmission electron microscopy (TEM) methods. Operando and cryogenic TEM with high spatial and temporal resolutions realize the dynamic visualization of the vulnerable chemical structures in interphase layers. Following a scrutinization of the interphases on different metal anodes, we elucidate their features for appealing multivalent metal anodes. Finally, perspectives are proposed for the remaining issues on analyzing and regulating interphases for practical MMBs.
Collapse
Affiliation(s)
- Huijun Lin
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jingya Yu
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Feiyang Chen
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Renjie Li
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, P. R. China
| | - Zheng-Long Xu
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- State Key Laboratory of Ultraprecision Machining Technology, the Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
7
|
Ding Q, Han T, Lin X, Zhou T, Liu J, Zhang H. A single-crystalline Co 3O 4 nanoparticle-assembled three-dimensional chain as an ultra-stable magnesium-ion battery cathode at different temperatures. Dalton Trans 2023; 52:7161-7165. [PMID: 37161790 DOI: 10.1039/d3dt01077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Engineering optimal cathode materials is significant for developing stable magnesium-ion (Mg-ion) batteries. Here, we present a single-crystalline Co3O4 nanoparticle-chain three-dimensional (3D) micro/nanostructure as an Mg-ion battery cathode. The hierarchical morphology is composed of radial nanochains self-assembled by single-crystalline nanoparticles, thus significantly facilitating the transfer of electrons and ions. 3D single-crystalline Co3O4 as an Mg-ion battery cathode displays a stable capacity of 111.7 mA h g-1 after 200 cycles with a decay rate per cycle as low as 0.037%. After four rounds of testing, the rate performance remains stable with a tiny decrease from 125.94 to 124.78 mA h g-1. At temperatures of 45 °C and -5 °C, the cathode still displays good stability and rate-performance. Galvanostatic intermittent titration technique (GITT) results verify a low energy barrier of the Co3O4 cathode. It is expected that the single-crystalline nanoparticle-assembled 3D structure and the stable Mg-storage performance will find broad applications for developing other stable energy-storage materials and their batteries.
Collapse
Affiliation(s)
- Qian Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Xirong Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ting Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
8
|
Zhang F, Shen Y, Xu H, Zhao X. Bismuth Nanoparticle-Embedded Carbon Microrod for High-Rate Electrochemical Magnesium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23353-23360. [PMID: 37140917 DOI: 10.1021/acsami.3c03877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bismuth metal is regarded as a promising magnesium storage anode material for magnesium-ion batteries due to its high theoretical volumetric capacity and a low alloying potential versus magnesium metal. However, the design of highly dispersed bismuth-based composite nanoparticles is always used to achieve efficient magnesium storage, which is adverse to the development of high-density storage. Herein, a bismuth nanoparticle-embedded carbon microrod (Bi⊂CM), which is prepared via annealing of the bismuth metal-organic framework (Bi-MOF), is developed for high-rate magnesium storage. The use of the Bi-MOF precursor synthesized at an optimized solvothermal temperature of 120 °C benefits the formation of the Bi⊂CM-120 composite with a robust structure and a high carbon content. As a result, the as-prepared Bi⊂CM-120 anode compared to pure Bi and other Bi⊂CM anodes exhibits the best rate performance of magnesium storage at various current densities from 0.05 to 3 A g-1. For example, the reversible capacity of the Bi⊂CM-120 anode at 3 A g-1 is ∼17 times higher than that of the pure Bi anode. This performance is also competitive among those of the previously reported Bi-based anodes. Importantly, the microrod structure of the Bi⊂CM-120 anode material remained upon cycling, indicative of good cycling stability.
Collapse
Affiliation(s)
- Fangyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yinlin Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huanhuan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiangyu Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Zhang H, Qiao L, Armand M. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angew Chem Int Ed Engl 2022; 61:e202214054. [PMID: 36219515 DOI: 10.1002/anie.202214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered as one of the most viable battery chemistries amongst the "post" lithium-ion battery (LIB) technologies owing to their high volumetric capacity and the natural abundance of their key elements. The fundamental properties of Mg-ion conducting electrolytes are of essence to regulate the overall performance of RMBs. In this Review, the basic electrochemistry of Mg-ion conducting electrolytes batteries is discussed and compared to that of the Li-ion conducting electrolytes, and a comprehensive overview of the development of different Mg-ion conducting electrolytes is provided. In addition, the remaining challenges and possible solutions for future research are intensively discussed. The present work is expected to give an impetus to inspire the discovery of key electrolytes and thereby improve the electrochemical performances of RMBs and other related emerging battery technologies.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Lixin Qiao
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| |
Collapse
|
10
|
Progress and perspective on rechargeable magnesium-ion batteries. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Polymers (Basel) 2022; 14:polym14163428. [PMID: 36015687 PMCID: PMC9413307 DOI: 10.3390/polym14163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Covalent organic frameworks (COFs) have attracted significant interest because of their heteroatom-containing architectures, high porous networks, large surface areas, and capacity to include redox-active units, which can provide good electrochemical efficiency in energy applications. In this research, we synthesized two novel hydroxy-functionalized COFs-TAPT-2,3-NA(OH)2, TAPT-2,6-NA(OH)2 COFs-through Schiff-base [3 + 2] polycondensations of 1,3,5-tris-(4-aminophenyl)triazine (TAPT-3NH2) with 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (2,3-NADC) and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (2,6-NADC), respectively. The resultant hydroxy-functionalized COFs featured high BET-specific surface areas up to 1089 m2 g-1, excellent crystallinity, and superior thermal stability up to 60.44% char yield. When used as supercapacitor electrodes, the hydroxy-functionalized COFs exhibited electrochemical redox activity due to the presence of redox-active 2,3-dihydroxynaphthalene and 2,6-dihydroxynaphthalene in their COF skeletons. The hydroxy-functionalized COFs showed specific capacitance of 271 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 86.5% capacitance retention. Well-known pore features and high surface areas of such COFs, together with their superior supercapacitor performance, make them suitable electrode materials for use in practical applications.
Collapse
|
12
|
Mori S, Obora T, Namaki M, Kondo M, Moriya M. Organic Crystalline Solid Electrolytes with High Mg-Ion Conductivity Composed of Nonflammable Ionic Liquid Analogs and Mg(TFSA) 2. Inorg Chem 2022; 61:7358-7364. [PMID: 35504045 DOI: 10.1021/acs.inorgchem.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of solid electrolytes with Mg-ion conductivity at room temperature is an important issue to achieve all-solid magnesium batteries. We focus on organic ionic crystals with Mg-ion conduction paths in addition to nonflammable and nonvolatile features as an innovative candidate of solid electrolytes with Mg-ion conductivity. Herein, we show the development of novel organic ionic crystals, [N(CH3)4-n(CH2CH3)n][Mg{N(SO2CF3)2}3] (n = 0 or 2), using analogs of ionic liquids, [N(CH3)4][N(SO2CF3)2] (N1111TFSA) and [N(CH3)2(CH2CH3)2][N(SO2CF3)2] (N1122TFSA), and magnesium salt, Mg{N(SO2CF3)2}2 (Mg(TFSA)2). We also report the crystal structures of the obtained crystals and the high Mg-ion conductivity of 10-4 S cm-1 under mild conditions of 80 °C in the solid state. These results indicate that organic ionic crystals with ion conduction paths have significant potential as safe solid electrolytes and provide insights into developing innovative Mg-ion conductors.
Collapse
Affiliation(s)
- Sawako Mori
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takahito Obora
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Mizuka Namaki
- Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan.,Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.,College of Science, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Makoto Moriya
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan.,Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.,College of Science, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|