1
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
2
|
Yu J, Mu H, Wang P, Li H, Yang Z, Ren J, Li Y, Mei L, Zhang J, Yu W, Cui N, Yuan J, Wu J, Lan S, Zhang G, Lin S. Anisotropic van der Waals Tellurene-Based Multifunctional, Polarization-Sensitive, In-Line Optical Device. ACS NANO 2024; 18:19099-19109. [PMID: 39001858 DOI: 10.1021/acsnano.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 μm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.
Collapse
Affiliation(s)
- Jing Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Pu Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Jing Ren
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Luyao Mei
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jingni Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jian Yuan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
3
|
Liu B, Xiong J, Kan X, Liu S, Yang Z, Wang W, Zhao X, Yu Q, Zhu S, Wu J. External fields effectively switch the spin channels of transition metal-doped β-phase tellurene from first principles. Phys Chem Chem Phys 2024; 26:16883-16890. [PMID: 38833213 DOI: 10.1039/d4cp00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Non-volatile magnetic random-access memories have proposed the need for spin channel switching. However, this presents a challenge as each spin channel reacts differently to the external field. Tellurene is a semiconductor with a tunable bandgap, excellent stability, and high carrier concentration, but its lack of magnetic properties has hindered its application in spintronics. In this work, the influence of an external field on transition metal (TM)-doped β-tellurene is systematically analysed from first principles. First, the active-learning moment-tensor-potential (MTP) is used to verify the thermal stability of the V-doped system with the MTP proving to be 900 times faster than the traditional method. Subsequently, under biaxial strain ranging from -2% to 10%, the V-doped system undergoes a gradual transition from a magnetic semiconductor to a spin-gapless semiconductor, and further to a half-metal and magnetic metal. The band structure can be maintained under an electric field. By examining the magnetic anisotropy energy, the lattice changes profoundly impact the electromagnetic properties, particularly with the TMs being sensitive to strain. Moreover, the band structure is reflected in the spin resolution current of the magnetic tunnel junction. This work investigates the response of doped β-Te to external fields, revealing its potential applications in spintronics.
Collapse
Affiliation(s)
- Bin Liu
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China.
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jingxian Xiong
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China.
| | - Xuefen Kan
- School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China
| | - Sheng Liu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China.
| | - Wenjing Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xinxin Zhao
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China.
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Sicong Zhu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
4
|
Xu J, Wang Q, Shen M, Yang Y, Liu H, Yuan X, Zhang Y, Liu K, Cai S, Huang Y, Ren X. Demonstration of a 3D-Assembled Dual-Mode Photodetector Based on Tubular Graphene/III-V Semiconductors Heterostructure and Coplanar Three Electrodes. ACS NANO 2024; 18:14978-14988. [PMID: 38805401 DOI: 10.1021/acsnano.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
3D assembly technology is a cutting-edge methodology for constructing high-performance and multifunctional photodetectors since some attractive photodetection features such as light trapping effect, omnidirectional ability, and high spatial resolution can be introduced. However, there has not been any report of 3D-assembled multimode photodetectors owing to the lack of design and fabrication guideline of electrodes serving for 3D heterostructures. In this study, a 3D-assembled dual-mode photodetector (3DdmPD) was realized successfully via the clever electrical contact between the rolled-up tubular graphene/GaAs/InGaAs heterostructure and planar metal electrode. Arbitrary switching of three coplanar electrodes makes the as-fabricated tubular 3D photodetector work at the unbiased photodiode mode, which is suitable for energy conservation high-speed photodetection, or the biased photoconductive mode, which favors extremely weak light photodetection, fully showing the advantages of multifunctional detection. In more detail, the Ilight/Idark ratio reached as high as 2 × 104, and a responsivity of 42.3 mA/W, a detectivity of 1.5 × 1010 Jones, as well as a rising/falling time (τr/τf) of 360/370 μs were achieved under the self-driven photodiode mode. Excitingly, 3DdmPD shows omnidirectional photodetection ability at the same time. When 3DdmPD works at the photoconductive mode with 5 V bias, its responsivity is extremely high as 7.9 × 104 A/W and corresponding detectivity is increased to 1.0 × 1011 Jones. Benefiting from the totally independent coplanar electrodes, 3DdmPD is much more easily integrated as arrays that are expected to offer the function of high-speed omnidirectional image-sensing with ultralow power consumption than the planar counterparts which share communal bottom electrodes. We believe that our work can contribute to the progress of 3D-assembled optoelectronic devices.
Collapse
Affiliation(s)
- Jiyu Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Mingyang Shen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yubo Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Kai Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shiwei Cai
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yongqing Huang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
5
|
Bi C, Wu T, Shao J, Jing P, Xu H, Xu J, Guo W, Liu Y, Zhan D. Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:750. [PMID: 38727344 PMCID: PMC11085414 DOI: 10.3390/nano14090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Tellurium exhibits exceptional intrinsic electronic properties. However, investigations into the modulation of tellurium's electronic properties through physical modification are notably scarce. Here, we present a comprehensive study focused on the evolution of the electronic properties of tellurium crystal flakes under plasma irradiation treatment by employing conductive atomic force microscopy and Raman spectroscopy. The plasma-treated tellurium experienced a process of defect generation through lattice breaking. Prior to the degradation of electronic transport performance due to plasma irradiation treatment, we made a remarkable observation: in the low-energy region of hydrogen plasma-treated tellurium, a notable enhancement in conductivity was unexpectedly detected. The mechanism underlying this enhancement in electronic transport performance was thoroughly elucidated by comparing it with the electronic structure induced by argon plasma irradiation. This study not only fundamentally uncovers the effects of plasma irradiation on tellurium crystal flakes but also unearths an unprecedented trend of enhanced electronic transport performance at low irradiation energies when utilizing hydrogen plasma. This abnormal trend bears significant implications for guiding the prospective application of tellurium-based 2D materials in the realm of electronic devices.
Collapse
Affiliation(s)
- Congzhi Bi
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China;
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| | - Tianyu Wu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
- College of Science, Beihua University, Jilin 132000, China
| | - Jingjing Shao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| | - Pengtao Jing
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| | - Hai Xu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| | - Jilian Xu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| | - Wenxi Guo
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China;
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Chongqing 400044, China
| | - Da Zhan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (T.W.); (J.S.); (P.J.); (H.X.); (J.X.)
| |
Collapse
|
6
|
Cheng Y, Wang J, He Z, Chen M, Guo X, Deng B, Ye Q, Li S, Chen H, Sou IK, Wu S. Broadband Photodetection of Centimeter-Scale T-Phase Gallium Telluride Grown by Molecular Beam Epitaxy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17881-17890. [PMID: 38537646 DOI: 10.1021/acsami.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Two-dimensional (2D) semiconductors have recently attracted considerable attention due to their promising applications in future integrated electronic and optoelectronic devices. Large-scale synthesis of high-quality 2D semiconductors is an increasingly essential requirement for practical applications, such as sensing, imaging, and communications. In this work, homogeneous 2D GaTe films on a centimeter scale are epitaxially grown on fluorphlogopite mica substrates by molecular beam epitaxy (MBE). The epitaxial GaTe thin films showed an atomically 2D layered lattice structure with a T phase, which has not been discovered in the GaTe geometric isomer. Furthermore, semiconducting behavior and high mobility above room temperature were found in T-GaTe epitaxial films, which are essential for application in semiconducting devices. The T-GaTe-based photodetectors demonstrated respectable photodetection performance with a responsivity of 13 mA/W and a fast response speed. By introducing monolayer graphene as the substrate, we successfully realized high-quality GaTe/graphene heterostructures. The performance has been significantly improved, such as the responsivity was enhanced more than 20 times. These results highlight a feasible scheme for exploring the crystal phase of 2D GaTe and realizing the controlled growth of GaTe films on large substrates, which could promote the development of broadband, high-performance, and large-scale photodetection applications.
Collapse
Affiliation(s)
- Yijun Cheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiali Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihao He
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Mingyi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinhao Guo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Deng
- Hangzhou Key Laboratory of Quantum Matter, Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Quanlin Ye
- Hangzhou Key Laboratory of Quantum Matter, Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuwei Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Iam Keong Sou
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Shuxiang Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Elahi E, Ahmad M, Dahshan A, Rabeel M, Saleem S, Nguyen VH, Hegazy HH, Aftab S. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics. NANOSCALE 2023; 16:14-43. [PMID: 38018395 DOI: 10.1039/d3nr04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDCs) with various physical characteristics have attracted significant interest from the scientific and industrial worlds in the years following Moore's law. The p-n junction is one of the earliest electrical components to be utilized in electronics and optoelectronics, and modern research on 2D materials has renewed interest in it. In this regard, device preparation and application have evolved substantially in this decade. 2D TMDCs provide unprecedented flexibility in the construction of innovative p-n junction device designs, which is not achievable with traditional bulk semiconductors. It has been investigated using 2D TMDCs for various junctions, including homojunctions, heterojunctions, P-I-N junctions, and broken gap junctions. To achieve high-performance p-n junctions, several issues still need to be resolved, such as developing 2D TMDCs of superior quality, raising the rectification ratio and quantum efficiency, and successfully separating the photogenerated electron-hole pairs, among other things. This review comprehensively details the various 2D-based p-n junction geometries investigated with an emphasis on 2D junctions. We investigated the 2D p-n junctions utilized in current rectifiers and photodetectors. To make a comparison of various devices easier, important optoelectronic and electronic features are presented. We thoroughly assessed the review's prospects and challenges for this emerging field of study. This study will serve as a roadmap for more real-world photodetection technology applications.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea.
| | - Muneeb Ahmad
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - A Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Muhammad Rabeel
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - Sidra Saleem
- Division of Science Education, Department of Energy Storage/Conversion Engineering for Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van Huy Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and H.M.C., Sejong University, Seoul 05006, South Korea
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea.
| |
Collapse
|
8
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
9
|
Lu C, Dai Q, Tang C, Wang X, Xu S, Sun L, Peng Y, Lv W. Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector. NANOTECHNOLOGY 2023; 34:495201. [PMID: 37647872 DOI: 10.1088/1361-6528/acf502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
One-dimensional nanowire structures composed of perovskite are widely recognized for their exceptional optoelectronic performance and mechanical properties, making them a popular area of investigation in photodetection research. In this work, a perovskite nanowire/copper phthalocyanine heterojunction-based photodetector was fabricated, which exhibits high photoresponse in the visible-near-infrared region. The incorporation of a heterojunction significantly enhanced the photoelectric performance. Specifically, the photoresponsivity and external quantum efficiency of the nanowire-based device were elevated from 58.5 A W-1and 1.35 × 104% to 84.5 A W-1and 1.97 × 104% at 532 nm, respectively. The enhanced photoresponse of the heterojunction device can be attributed to the unique microstructure of nanowire arrays. The wrapping of the nanowires by copper phthalocyanine forms heterojunctions with a larger dissociation area, which facilitated exciton dissociation and enhanced device performance. This work provides a promising example for optimizing the performance of nanowire devices.
Collapse
Affiliation(s)
- Chengyu Lu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Qinyong Dai
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, People's Republic of China
| | - Chenyu Tang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyu Wang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Sunan Xu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Lei Sun
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Yingquan Peng
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenli Lv
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Mei L, Zhang K, Cui N, Yu W, Li Y, Gong K, Li H, Fu N, Yuan J, Mu H, Huang Z, Xu Z, Lin S, Zhu L. Ultraviolet-Visible-Short-Wavelength Infrared Broadband and Fast-Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301386. [PMID: 37086119 DOI: 10.1002/smll.202301386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.
Collapse
Affiliation(s)
- Luyao Mei
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Kai Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kaiwen Gong
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nianqing Fu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jian Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zhanfeng Huang
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Zhengji Xu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Lu Zhu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| |
Collapse
|
11
|
Zhu H, Fan L, Wang K, Liu H, Zhang J, Yan S. Progress in the Synthesis and Application of Tellurium Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2057. [PMID: 37513066 PMCID: PMC10384241 DOI: 10.3390/nano13142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
In recent decades, low-dimensional nanodevices have shown great potential to extend Moore's Law. The n-type semiconductors already have several candidate materials for semiconductors with high carrier transport and device performance, but the development of their p-type counterparts remains a challenge. As a p-type narrow bandgap semiconductor, tellurium nanostructure has outstanding electrical properties, controllable bandgap, and good environmental stability. With the addition of methods for synthesizing various emerging tellurium nanostructures with controllable size, shape, and structure, tellurium nanomaterials show great application prospects in next-generation electronics and optoelectronic devices. For tellurium-based nanomaterials, scanning electron microscopy and transmission electron microscopy are the main characterization methods for their morphology. In this paper, the controllable synthesis methods of different tellurium nanostructures are reviewed, and the latest progress in the application of tellurium nanostructures is summarized. The applications of tellurium nanostructures in electronics and optoelectronics, including field-effect transistors, photodetectors, and sensors, are highlighted. Finally, the future challenges, opportunities, and development directions of tellurium nanomaterials are prospected.
Collapse
Affiliation(s)
- Hongliang Zhu
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Fan
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kaili Wang
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hao Liu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiawei Zhang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
12
|
Hu Y, Song X, Jia D, Su W, Lv X, Li L, Li X, Yan Y, Jiang Y, Xia C. Strong interlayer coupling in p-Te/n-CdSe van der Waals heterojunction for self-powered photodetectors with fast speed and high responsivity. OPTICS EXPRESS 2023; 31:19804-19817. [PMID: 37381388 DOI: 10.1364/oe.489029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Self-driven photodetectors, which can detect optical signals without external voltage bias, are highly attractive in the field of low-power wearable electronics and internet of things. However, currently reported self-driven photodetectors based on van der Waals heterojunctions (vdWHs) are generally limited by low responsivity due to poor light absorption and insufficient photogain. Here, we report p-Te/n-CdSe vdWHs utilizing non-layered CdSe nanobelts as efficient light absorption layer and high mobility Te as ultrafast hole transporting layer. Benefiting from strong interlayer coupling, the Te/CdSe vdWHs exhibit stable and excellent self-powered characteristics, including ultrahigh responsivity of 0.94 A W-1, remarkable detectivity of 8.36 × 1012 Jones at optical power density of 1.18 mW cm-2 under illumination of 405 nm laser, fast response speed of 24 µs, large light on/off ratio exceeding 105, as well as broadband photoresponse (405-1064 nm), which surpass most of the reported vdWHs photodetectors. In addition, the devices display superior photovoltaic characteristics under 532 nm illumination, such as large Voc of 0.55 V, and ultrahigh Isc of 2.73 µA. These results demonstrate the construction of 2D/non-layered semiconductor vdWHs with strong interlayer coupling is a promising strategy for high-performance and low-power consumption devices.
Collapse
|
13
|
Gómez-Mancebo MB, Fernández-Martínez R, Ruiz-Perona A, Rubio V, Bastante P, García-Pérez F, Borlaf F, Sánchez M, Hamada A, Velasco A, Ryu YK, Calle F, Bonales LJ, Quejido AJ, Martínez J, Rucandio I. Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1391. [PMID: 37110977 PMCID: PMC10144285 DOI: 10.3390/nano13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
A way to obtain graphene-based materials on a large-scale level is by means of chemical methods for the oxidation of graphite to obtain graphene oxide (GO), in combination with thermal, laser, chemical and electrochemical reduction methods to produce reduced graphene oxide (rGO). Among these methods, thermal and laser-based reduction processes are attractive, due to their fast and low-cost characteristics. In this study, first a modified Hummer's method was applied to obtain graphite oxide (GrO)/graphene oxide. Subsequently, an electrical furnace, a fusion instrument, a tubular reactor, a heating plate, and a microwave oven were used for the thermal reduction, and UV and CO2 lasers were used for the photothermal and/or photochemical reduction. The chemical and structural characterizations of the fabricated rGO samples were performed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy measurements. The analysis and comparison of the results revealed that the strongest feature of the thermal reduction methods is the production of high specific surface area, fundamental for volumetric energy applications such as hydrogen storage, whereas in the case of the laser reduction methods, a highly localized reduction is achieved, ideal for microsupercapacitors in flexible electronics.
Collapse
Affiliation(s)
- M Belén Gómez-Mancebo
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | | | - Andrea Ruiz-Perona
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Verónica Rubio
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Pablo Bastante
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Fernando García-Pérez
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Fernando Borlaf
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Miguel Sánchez
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Assia Hamada
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Andrés Velasco
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Yu Kyoung Ryu
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Laura J Bonales
- Unidad de Residuos de Alta Actividad, Departamento de Energía, CIEMAT, 28040 Madrid, Spain
| | - Alberto J Quejido
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| | - Javier Martínez
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Dpto. de Ciencia de Materiales, E.T.S.I de Caminos, Canales y Puertos, UPM, 28040 Madrid, Spain
| | - Isabel Rucandio
- División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
14
|
Dolina ES, Kulyamin PA, Grekova AA, Kochaev AI, Maslov MM, Katin KP. Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1964. [PMID: 36903079 PMCID: PMC10003780 DOI: 10.3390/ma16051964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
We report the geometry, kinetic energy, and some optical properties of the 6,6,12-graphyne-based systems. We obtained the values of their binding energies and structural characteristics such as bond lengths and valence angles. Moreover, using nonorthogonal tight-binding molecular dynamics, we carried out a comparative analysis of the thermal stability of 6,6,12-graphyne-based isolated fragments (oligomer) and two-dimensional crystals constructed on its basis in a wide temperature range from 2500 to 4000 K. We found the temperature dependence of the lifetime for the finite graphyne-based oligomer as well as for the 6,6,12-graphyne crystal using a numerical experiment. From these temperature dependencies, we obtained the activation energies and frequency factors in the Arrhenius equation that determine the thermal stability of the considered systems. The calculated activation energies are fairly high: 1.64 eV for the 6,6,12-graphyne-based oligomer and 2.79 eV for the crystal. It was confirmed that the thermal stability of the 6,6,12-graphyne crystal concedes only to traditional graphene. At the same time, it is more stable than graphene derivatives such as graphane and graphone. In addition, we present data on the Raman and IR spectra of the 6,6,12-graphyne, which will help distinguish it from the other carbon low-dimensional allotropes in the experiment.
Collapse
Affiliation(s)
- Ekaterina S. Dolina
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, Moscow 115409, Russia
| | - Pavel A. Kulyamin
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, Moscow 115409, Russia
| | - Anastasiya A. Grekova
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, Moscow 115409, Russia
| | - Alexey I. Kochaev
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, Moscow 119620, Russia
- Laboratory of Acoustic Microscopy, Science Institute of Biochemical Physics Named after N.M. Emanuel of the Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia
- Research and Education Center “Silicon and Carbon Nanotechnologies”, Ulyanovsk State University, Leo Tolstoy Str. 42, Ulyanovsk 432017, Russia
| | - Mikhail M. Maslov
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, Moscow 115409, Russia
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, Moscow 119620, Russia
| | - Konstantin P. Katin
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, Moscow 115409, Russia
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, Moscow 119620, Russia
| |
Collapse
|
15
|
Isceri S, Dragoni D, Campi D, Cecchi S, Bernasconi M. Geometry of tellurene adsorbed on the Si(111)- R30°-Sb surface from first principles calculations. Phys Chem Chem Phys 2022; 24:18608-18614. [PMID: 35894698 DOI: 10.1039/d2cp01759h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 2D form of tellurium, named tellurene, is one of the latest discoveries in the family of 2D mono-elemental materials. In a trilayer configuration, free-standing tellurene was predicted theoretically to acquire two crystallographic forms, the α and β phases, corresponding to either a 1T-MoS2-like geometry or a trilayer slab exposing the Te(101̄0) surface of bulk Te with helical chains lying in-plane and further reconstructed due to the formation of interchain bonds. Either one or the other of the two phases was observed experimentally to prevail depending on the substrate they were grown onto. In the perspective to integrate tellurene on silicon, we here report an ab initio study of the adsorption of tellurene on the Si(111)-R30° surface passivated by antinomy. According to the literature, this substrate is chosen for the growth of several tellurides by molecular beam epitaxy. The calculations reveal that on this substrate the adsorption energy mostly compensates the energy difference between the α and β phases in the free-standing configuration which suggests that the prevalence of one phase over the other might in this case strongly depend on the kinetics effects and deposition conditions.
Collapse
Affiliation(s)
- Stefania Isceri
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy.,Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Daniele Dragoni
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Davide Campi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Stefano Cecchi
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117, Berlin, Germany.,Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Marco Bernasconi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| |
Collapse
|