1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
3
|
Wu Z, Yu W, Luo F, Jin Y, Pan L, Deng Q, Wang Q, Yu M. Construction of Heterogeneous Aggregation-Induced Emission Microspheres with Enhanced Multi-Mode Information Encryption. Molecules 2024; 29:5852. [PMID: 39769939 PMCID: PMC11676549 DOI: 10.3390/molecules29245852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Traditional organic light-emitting materials hinder their anti-counterfeiting application in solid state due to their aggregation-caused quenching effect. A facile and straightforward method was reported to introduce AIE molecules into microspheres and manipulate different reaction parameters to prepare AIE microspheres with different morphologies. In this strategy, fluorescent microspheres with spherical, apple-shaped, and hemoglobin-like types were synthesized. Driven by the photocyclization and oxidation of tetraphenylethene, microspheres can be used as an aqueous fluorescence ink with erasable properties. The fluorescent patterns printed by microsphere ink on paper can be irreversibly erased by prolonged exposure to ultraviolet light (365 nm, 60 mw/cm2). Moreover, the multi-morphology microspheres can be further arranged for multiple-information encryption and anti-counterfeiting of barcodes and two-dimensional codes, in which double validation was carried out through fluorescence spectroscopy and laser confocal microscopy. This approach provides a new method for more reliable anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Zhiwei Wu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Weiqin Yu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Fenghao Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yue Jin
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Ligou Pan
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Qianjun Deng
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Qing Wang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, School of Food & Pharmaceutical Engineering, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing University, Zhaoqing 526061, China
| | - Mingguang Yu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
4
|
Li J, Zheng Z, Ma Y, Dong Z, Li MH, Hu J. Mechanically Ultra-Robust Fluorescent Elastomer for Elaborating Auxetic Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402130. [PMID: 38678509 DOI: 10.1002/smll.202402130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Fluorescent elastomers are predominantly fabricated through doping fluorescent components or conjugating chromophores into polymer networks, which often involves detrimental effects on mechanical performance and also makes large-scale production difficult. Inspired by the heteroatom-rich microphase separation structures assisted by intensive hydrogen bonds in natural organisms, an ultra-robust fluorescent polyurethane elastomer is reported, which features a remarkable fracture strength of 87.2 MPa with an elongation of 1797%, exceptional toughness of 678.4 MJ m-3 and intrinsic cyan fluorescence at 445 nm. Moreover, the reversible fluorescence variation with temperature could in situ reveal the microphase separation of the elastomer in real time. By taking advantage of mechanical properties, intrinsic fluorescence and hydrogen bonds-promoted interfacial bonding ability, this fluorescent elastomer can be utilized as an auxetic skeleton for the elaboration of an integrated auxetic composite. Compared with the auxetic skeleton alone, the integrated composite shows an improved mechanical performance while maintaining auxetic deformation in a large strain below 185%, and its auxetic process can be visually detected under ultraviolet light by the fluorescence of the auxetic skeleton. The concept of introducing hydrogen-bonded heteroatom-rich microphase separation structures into polymer networks in this work provides a promising approach to developing fluorescent elastomers with exceptional mechanical properties.
Collapse
Affiliation(s)
- Jiawei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yaning Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhaoxing Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Chaoyang District, Changchun, 130022, China
| |
Collapse
|
5
|
Jin C, Yang X, Zhao W, Zhao Y, Wang Z, Tan J. Synthesis, properties and emerging applications of multi-boron coordinated chromophores. Coord Chem Rev 2024; 513:215892. [DOI: 10.1016/j.ccr.2024.215892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Hong SG, Oh BM, Kim JH, Lee JU. Textile-Based Adsorption Sensor via Mixed Solvent Dyeing with Aggregation-Induced Emission Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1745. [PMID: 38673102 PMCID: PMC11051475 DOI: 10.3390/ma17081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study demonstrates a novel methodology for developing a textile-based adsorption sensor via mixed solvent dyeing with aggregation-induced emission (AIE) dyes on recycled fabrics. AIE dyes were incorporated into the fabrics using a mixed solvent dyeing method with a co-solvent mixture of H2O and organic solvents. This method imparted unique fluorescence properties to fabrics, altering fluorescence intensity or wavelength based on whether the AIE dye molecules were in an isolated or aggregated state on the fabrics. The precise control of the H2O fraction to organic solvent during dyeing was crucial for influencing fluorescence intensity and sensing characteristics. These dyed fabrics exhibited reactive thermochromic and vaporchromic properties, with changes in fluorescence intensity corresponding to variations in temperature and exposure to volatile organic solvents (VOCs). Their superior characteristics, including a repetitive fluorescence switching property and resistance to photo-bleaching, enhance their practicality across various applications. Consequently, the smart fabrics dyed with AIE dye not only find applications in clothing and fashion design but demonstrate versatility in various fields, extending to sensing temperature, humidity, and hazardous chemicals.
Collapse
Affiliation(s)
- Seong Gyun Hong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Byeong M. Oh
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jong H. Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jea Uk Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
7
|
Li Y, Meng S, Dong N, Wei Y, Wang Y, Ren Y, Li X, Liu D, You T. Wavelength-Resolved Janus Biosensing Interface for Ratiometric Electrochemical Analysis. Anal Chem 2024; 96:2582-2589. [PMID: 38294965 DOI: 10.1021/acs.analchem.3c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.
Collapse
Affiliation(s)
- Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
8
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
9
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
10
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
11
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
12
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|