1
|
Fu Y, Ai X, Hu Z, Zhao S, Lu X, Huang J, Huang A, Wang L, Zhang Q, Jiang W. Interface kinetic manipulation enabling efficient and reliable Mg 3Sb 2 thermoelectrics. Nat Commun 2024; 15:9355. [PMID: 39472549 PMCID: PMC11522479 DOI: 10.1038/s41467-024-53598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Development of efficient and reliable thermoelectric generators is vital for the sustainable utilization of energy, yet interfacial losses and failures between the thermoelectric materials and the electrodes pose a significant obstacle. Existing approaches typically rely on thermodynamic equilibrium to obtain effective interfacial barrier layers, which underestimates the critical factors of interfacial reaction and diffusion kinetics. Here, we develop a desirable barrier layer by leveraging the distinct chemical reaction activities and diffusion behaviors during sintering and operation. Titanium foil is identified as a suitable barrier layer for Mg3Sb2-based thermoelectric materials due to the creation of a highly reactive ternary MgTiSb metastable phase during sintering, which then transforms to stable binary Ti-Sb alloys during operation. Additionally, titanium foil is advantageous due to its dense structure, affordability, and ease of manufacturing. The interfacial contact resistivity reaches below 5 μΩ·cm2, resulting in a Mg3Sb2-based module efficiency of up to 11% at a temperature difference of 440 K, which exceeds that of most state-of-the-art medium-temperature thermoelectric modules. Furthermore, the robust Ti foil/Mg3(Sb,Bi)2 joints endow Mg3Sb2-based single-legs as well as modules with negligible degradation over long-term thermal cycles, thereby paving the way for efficient and sustainable waste heat recovery applications.
Collapse
Affiliation(s)
- Yuntian Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Xin Ai
- Leibniz Institute for Solid State and Materials Research Dresden e.V. (IFW-Dresden), Dresden, Germany
| | - Zhongliang Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Shuhan Zhao
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Xiaofang Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jian Huang
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Aibin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China.
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, China.
| | - Qihao Zhang
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China.
- Institute of Functional Materials, Donghua University, Shanghai, China.
| |
Collapse
|
2
|
Cai C, Wu X, Chen Y, Cheng F, Wei Z. Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation. Int J Biol Macromol 2024; 277:134248. [PMID: 39098463 DOI: 10.1016/j.ijbiomac.2024.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiative cooling integrated thermoelectric devices still suffer from low-temperature gradient and output voltage. Here, based on the Mie scattering and internal reflection enhancing principle, an impact-inducing geometry reconstruction approach was proposed to fabricate hierarchical nanostructured cellulosic coatings with good daytime cooling performance to achieve stable electricity generation function, which can be realized by using a scalable and facile wet ball milling technology. Guided by the theoretical simulations of the finite difference time domain method (FDTD), the cellulose and TiO2 nanoparticles can assemble into spherical envelope structured coatings drying by the shear, impact, and friction interaction in the ball milling process, dramatically enhancing the Mie scattering and internal reflection of coatings. The cellulosic coatings exhibit sunlight reflectivity of 0.962 and infrared emissivity of 0.94, resulting in a daytime radiative cooling efficiency of 5.9 °C under direct sunlight. Energy Plus stimulation demonstrated 35 % cooling energy and 468.9 kWh of cooling energy can be saved annually in China. Meanwhile, this cellulosic coating-based thermoelectric device can deliver a high voltage output of 150 mV under 1 Sun due to the strong bonding and high-temperature gradient formation (30 °C), which is higher than previous reports. This study will facilitate the development of sustainable power generation device for the goal of green future.
Collapse
Affiliation(s)
- Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Xiaodan Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Fulin Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zechang Wei
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
3
|
Wu X, Ma X, Yao H, Liang K, Zhao P, Hou S, Yin L, Yang H, Sui J, Lin X, Cao F, Zhang Q, Mao J. Revealing the Chemical Instability of Mg 3Sb 2-xBi x-Based Thermoelectric Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50216-50224. [PMID: 37862682 DOI: 10.1021/acsami.3c12290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
n-Type Mg3Sb2-xBix alloys have been regarded as promising thermoelectric materials due to their excellent performance and low cost. For practical applications, the thermoelectric performance is not the only factor that should be taken into consideration. In addition, the chemical and thermal stabilities of the thermoelectric material are of equal importance for the module design. Previous studies reported that the Mg3Sb2-xBix alloys were unstable in an ambient environment. In this work, we found that Mg3Sb2-xBix alloys reacted with H2O and O2 at room temperature and formed amorphous Mg(OH)2/MgO and crystalline Bi/Sb. The substantial loss of Mg resulted in a significant deterioration in thermoelectric properties, accompanied by the transition from n-type to p-type. With the increase in Bi content, the chemical stability decreased due to the higher formation energy of Mg3Bi2. A chemically stable Mg3Bi2 sample was achieved by coating it with polydimethylsiloxane to isolate H2O and O2 in the air.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Xiaojing Ma
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Honghao Yao
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Kun Liang
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Peng Zhao
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Shuaihang Hou
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Li Yin
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Hengyu Yang
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Jiehe Sui
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xi Lin
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Feng Cao
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Qian Zhang
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Mao
- School of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, P.R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Sun Y, Fu J, Ohishi Y, Toh K, Suekuni K, Kihou K, Anazawa U, Lee CH, Kurosaki K. Mechanical Compatibility between Mg 3(Sb,Bi) 2 and MgAgSb in Thermoelectric Modules. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23246-23254. [PMID: 37144778 DOI: 10.1021/acsami.3c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thermoelectric (TE) modules are exposed to temperature gradients and repeated thermal cycles during their operation; therefore, mechanically robust n- and p-type legs are required to ensure their structural integrity. The difference in the coefficients of thermal expansion (CTEs) of the two legs of a TE module can cause stress buildup and the deterioration of performance with frequent thermal cycles. Recently, n-type Mg3Sb2 and p-type MgAgSb have become two promising components of low-temperature TE modules because of to their high TE performance, nontoxicity, and abundance. However, the CTEs of n-Mg3Sb2 and p-MgAgSb differ by approximately 10%. Furthermore, the oxidation resistances of these materials at increased temperatures are unclear. This work manipulates the thermal expansion of Mg3Sb2 by alloying it with Mg3Bi2. The addition of Bi to Mg3Sb2 reduces the coefficient of linear thermal expansion from 22.6 × 10-6 to 21.2 × 10-6 K-1 for Mg3Sb1.5Bi0.5, which is in excellent agreement with that of MgAgSb (21 × 10-6 K-1). Furthermore, thermogravimetric data indicate that both Mg3Sb1.5Bi0.5 and MgAgSb are stable in air and Ar at temperatures below ∼570 K. The results suggest the compatibility and robustness of Mg3Sb1.5Bi0.5 and MgAgSb as a pair of thermoelectric legs for low-temperature TE modules.
Collapse
Affiliation(s)
- Yifan Sun
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori, Sennan-gun 590-0494 Osaka, Japan
| | - Jiahui Fu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yuji Ohishi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Keita Toh
- Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan
| | - Koichiro Suekuni
- Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan
| | - Kunihiro Kihou
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, Japan
| | - Ushin Anazawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, Japan
| | - Chul-Ho Lee
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, Japan
| | - Ken Kurosaki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori, Sennan-gun 590-0494 Osaka, Japan
| |
Collapse
|
5
|
Zhou Y, Liu X, Jia B, Ding T, Mao D, Wang T, Ho GW, He J. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. SCIENCE ADVANCES 2023; 9:eadf5701. [PMID: 36638175 PMCID: PMC9839327 DOI: 10.1126/sciadv.adf5701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Flexible thermoelectric harvesting of omnipresent spatial thermodynamic energy, though promising in low-grade waste heat recovery (<100°C), is still far from industrialization because of its unequivocal cost-ineffectiveness caused by low thermoelectric efficiency and power-cost coupled device topology. Here, we demonstrate unconventional upcycling of low-grade heat via physics-guided rationalized flexible thermoelectrics, without increasing total heat input or tailoring material properties, into electricity with a power-cost ratio (W/US$) enhancement of 25.3% compared to conventional counterparts. The reduced material usage (44%) contributes to device power-cost "decoupling," leading to geometry-dependent optimal electrical matching for output maximization. This offers an energy consumption reduction (19.3%), electricity savings (0.24 kWh W-1), and CO2 emission reduction (0.17 kg W-1) for large-scale industrial production, fundamentally reshaping the R&D route of flexible thermoelectrics for techno-economic sustainable heat harvesting. Our findings highlight a facile yet cost-effective strategy not only for low-grade heat harvesting but also for electronic co-design in heat management/recovery frontiers.
Collapse
Affiliation(s)
- Yi Zhou
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Xixi Liu
- Shenzhen Thermo-Electric New Energy Co. Ltd., Shenzhen 518112, China
| | - Baohai Jia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Dasha Mao
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tiancheng Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138632, Singapore
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Ministry of Education, Shenzhen 518055, China
| |
Collapse
|
6
|
Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M, He J. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022; 377:208-213. [DOI: 10.1126/science.abq5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The high-entropy concept provides extended, optimized space of a composition, resulting in unusual transport phenomena and excellent thermoelectric performance. By tuning electron and phonon localization, we enhanced the figure-of-merit value to 2.7 at 750 kelvin in germanium telluride–based high-entropy materials and realized a high experimental conversion efficiency of 13.3% at a temperature difference of 506 kelvin with the fabricated segmented module. By increasing the entropy, the increased crystal symmetry delocalized the distribution of electrons in the distorted rhombohedral structure, resulting in band convergence and improved electrical properties. By contrast, the localized phonons from the entropy-induced disorder dampened the propagation of transverse phonons, which was the origin of the increased anharmonicity and largely depressed lattice thermal conductivity. We provide a paradigm for tuning electron and phonon localization by entropy manipulation, but we have also demonstrated a route for improving the performance of high-entropy thermoelectric materials.
Collapse
Affiliation(s)
- Binbin Jiang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wu Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shixuan Liu
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaofan Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yani Chen
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Xie
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingyuan Huang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|