1
|
Liu B, Guo K, Yue Q, Gao Y, Gao B. Uncovering the performance and intrinsic mechanism of different hydrolyzed AlTi species in polystyrene nanoplastics coagulation. WATER RESEARCH 2024; 266:122440. [PMID: 39298895 DOI: 10.1016/j.watres.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Hydrolyzed AlTi species are essential metal-based coagulants in a coagulation process to remove nanoplastics (NPs). Understanding the molecular interactions between hydrolyzed AlTi species and NPs is key to promoting coagulation efficiency. In this study, the coagulation performance and intrinsic mechanism of different AlTi species (including monomeric AlTi and polymeric AlTi species-Al13Ti13) for NPs removal were systematically investigated. We found that the polymeric AlTi species exhibited higher turbidity removal (95.0 %) and lower residual Al content (20.67 μg/L) at a low dosage over monomeric AlTi species. Al13 and Al13Ti13 formed by in situ hydrolysis were the dominant species to destabilize and aggregate NPs at pH 6. Main coagulation mechanisms were dominated by charge neutralization, complexation between the aliphatic CH of NPs and Al/Ti-OH, and cation-π interaction between polycations and the aromatic structure of NPs. The preformed Al13Ti13 showed multiple positive charge binding sites assisting its easy adsorption on NPs by electrostatic attraction, and then formed microscale aggregates through charge neutralization or intermolecular interaction. The preformed Al13Ti13 demonstrated a high stability and coagulation performance with respect to pH changes in raw water, whereas the promotion of μ-OH bridges dissociation by OH- and the presence of electrostatic repulsion significantly decreased the NPs removal by monomeric AlTi at high pH. This study provides valuable theoretical insights into the interaction between NPs and various hydrolyzed AlTi species.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
2
|
El Basset W, Cornu R, Zaiter T, Jacquin L, Pellequer Y, Moulari B, Diab-Assaf M, Brunel F, Monteil V, Béduneau A. Impact of polyethylene nanoplastics on human intestinal cells. Nanotoxicology 2024; 18:499-510. [PMID: 39207115 DOI: 10.1080/17435390.2024.2393643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Polyethylene (PE) is one of the most widely used plastics in the world. Its degradation leads to the production of small particles including microplastics and nanoplastics (NPs). Plastic particles' presence poses a health risk. The aim of this work was to investigate the toxicity of two model surfactant-free PE NPs prepared by polymerization of ethylene from cationic and anionic water-soluble initiators on human cell lines Caco-2 and HT29-MTX. After physicochemical characterization, their acute and subacute toxicity profile, including cytotoxicity, oxidative stress, and genotoxicity, was evaluated on both cell lines. Results showed a size increase of PE NPs in culture medium. Zeta potential values close to -10 mV were no longer dependent on the initiator charge after adsorption of serum components in culture medium. However, the cellular toxicity of the cationic and anionic PE NPs was very different. A time-and-concentration dependent cytotoxic, oxidative, and genotoxic effects on Caco-2 cells were only observed for PE NPs prepared with cationic initiators. No toxicity was observed on HT29-MTX, likely due to the protective mucus layer. Genotoxicity correlated with oxidative stress of some PE NPs on Caco-2 cells was observed from a concentration of 0.1 mg.mL-1 after 48-h exposure.
Collapse
Affiliation(s)
- Wassim El Basset
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Raphaël Cornu
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Léa Jacquin
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS, CP2M UMR 5128, Villeurbanne, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Mona Diab-Assaf
- EDST, Pharmacology and Cancerology Laboratory, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Fabrice Brunel
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS, CP2M UMR 5128, Villeurbanne, France
| | - Vincent Monteil
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS, CP2M UMR 5128, Villeurbanne, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| |
Collapse
|
3
|
Arribas Arranz J, Villacorta A, Rubio L, García-Rodríguez A, Sánchez G, Llorca M, Farre M, Ferrer JF, Marcos R, Hernández A. Kinetics and toxicity of nanoplastics in ex vivo exposed human whole blood as a model to understand their impact on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174725. [PMID: 39009158 DOI: 10.1016/j.scitotenv.2024.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.
Collapse
Affiliation(s)
- J Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - L Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - G Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - M Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - M Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - J F Ferrer
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, 46980 Paterna, Spain
| | - R Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - A Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
4
|
Xu K, Zhao L, Juneau P, Chen Z, Zheng X, Lian Y, Li W, Huang P, Yan Q, Chen X, He Z. The photosynthetic toxicity of nano-polystyrene to Microcystis aeruginosa is influenced by surface modification and light intensity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124206. [PMID: 38795819 DOI: 10.1016/j.envpol.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.
Collapse
Affiliation(s)
- Kui Xu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Libin Zhao
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Jiangsu Huanghai Ecological Environment Detection Co., Ltd., Yancheng, 224008, China
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiafei Zheng
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingli Lian
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weizhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Peihuan Huang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiongwen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
6
|
Maria VL, Santos J, Prodana M, Cardoso DN, Morgado RG, Amorim MJB, Barreto A. Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity. Nanotoxicology 2024; 18:299-313. [PMID: 38807536 DOI: 10.1080/17435390.2024.2358781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-Enchytraeus crypticus (Oligochaeta), Folsomia candida (Collembola) and Porcellionides pruinosus (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg-1 PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in F. candida at 300 mg kg-1 PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, P. pruinosus was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg-1 PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in F. candida and E. crypticus, respectively. Significant AChE inhibitions were also found in P. pruinosus but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: P. pruinosus > F. candida ≅ E. crypticus. This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.
Collapse
Affiliation(s)
- Vera L Maria
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Santos
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marija Prodana
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rui G Morgado
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171299. [PMID: 38423318 DOI: 10.1016/j.scitotenv.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.
Collapse
Affiliation(s)
- Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mengling Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
8
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
10
|
Zhuang Z, Liu T, Liu Z, Wang D. Polystyrene nanoparticles strengthen high glucose toxicity associated with alteration in insulin signaling pathway in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116056. [PMID: 38301579 DOI: 10.1016/j.ecoenv.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Using Caenorhabditis elegans as animal model, we investigated the effect of exposure to polystyrene nanoparticles (PS-NPs) in the range of μg/L on high glucose toxicity induction. With lifespan and locomotion behavior as endpoints, we observed that PS-NP (10 and 100 μg/L) enhanced toxicity in 50 mM glucose treated animals. In insulin signaling pathway, expressions of genes encoding insulin receptor (daf-2), kinases (age-1 and akt-1/2), and insulin peptides (ins-9, ins-6, and daf-28) were increased, and expressions of daf-16 and its target of sod-3 were decreased in high glucose treated nematodes followed by PS-NP exposure. Toxicity enhancement in high glucose treated nematodes by PS-NP exposure was inhibited by RNAi of daf-2, age-1, akt-2, akt-1, and 3 insulin peptides genes, but increased by RNAi of daf-16 and sod-3. The resistance of animals with RNAi of daf-2 to toxicity in high glucose treated nematodes followed by PS-NP exposure could be suppressed by RNAi of daf-16. Moreover, in high glucose treated animals followed by PS-NP exposure, daf-2 expression was inhibited by RNAi of ins-6, ins-9, and daf-28. Our data demonstrated the risk of PS-NP exposure in enhancing the high glucose toxicity. More importantly, alteration in expression of genes in insulin signaling pathway was associated with the toxicity enhancement in high glucose treated nematodes followed by PS-NP exposure.
Collapse
Affiliation(s)
| | | | - Zhengying Liu
- Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
11
|
Kumar D, Singh R, Upadhyay SK, Verma KK, Tripathi RM, Liu H, Dhankher OP, Tripathi RD, Sahi SV, Seth CS. Review on interactions between nanomaterials and phytohormones: Novel perspectives and opportunities for mitigating environmental challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111964. [PMID: 38159611 DOI: 10.1016/j.plantsci.2023.111964] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.
Collapse
Affiliation(s)
| | - Ritu Singh
- Departmental of Environmental Science, Central University of Rajasthan, Ajmer 305817, Rajsthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Schröter L, Jentsch L, Maglioni S, Muñoz-Juan A, Wahle T, Limke A, von Mikecz A, Laromaine A, Ventura N. A Multisystemic Approach Revealed Aminated Polystyrene Nanoparticles-Induced Neurotoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302907. [PMID: 37899301 DOI: 10.1002/smll.202302907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Exposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH2 ) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R-complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS-NH2 particles, including a decreased neuronal differentiation and an increased Amyloid β (Aβ) secretion, a sensitive readout correlating with Alzheimer's disease pathology. In parallel, only in vivo treatments with PS-NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aβ compared to wild-type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.
Collapse
Affiliation(s)
- Laura Schröter
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Lena Jentsch
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Tina Wahle
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Annette Limke
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| |
Collapse
|
13
|
Zhang M, Shi J, Pan H, Zhu J, Wang X, Song L, Deng H. A novel tiRNA-Glu-CTC induces nanoplastics accelerated vascular smooth muscle cell phenotypic switching and vascular injury through mitochondrial damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169515. [PMID: 38154651 DOI: 10.1016/j.scitotenv.2023.169515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Nanoplastics pose several health hazards, especially vascular toxicity. Transfer RNA-derived small RNAs (tsRNAs) are novel noncoding RNAs associated with different pathological processes. However, their biological roles and mechanisms in aberrant vascular smooth muscle cell (VSMC) plasticity and vascular injury are unclear. This study investigated the potent effects of tsRNAs on vascular injury induced by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Mice were exposed to PS-NPs (100 nm) at different doses (10-100 μg/mL) for 30 or 180 days. High-throughput sequencing was used to analyze tsRNA expression patterns in arterial tissues obtained from an in vivo model. Additionally, quantitative real-time polymerase chain reaction, fluorescent in situ hybridization assays, and dual-luciferase reporter assays were performed to measure the expression and impact of tiRNA-Glu-CTC on VSMCs exposed to PS-NPs. Short-term (≥50 μg/mL, moderate concentration) and long-term (≥10 μg/mL, low concentration) PS-NP exposure induced vascular injury in vivo. Cellular experiments showed that the moderate concentration of PS-NPs induced VSMC phenotypic switching, whereas a high concentration of PS-NPs (100 μg/mL) promoted VSMC apoptosis. PS-NP induced severe mitochondrial damage in VSMCs, including overexpression of reactive oxygen species, accumulation of mutated mtDNA, and dysregulation of genes related to mitochondrial synthesis and division. Compared with the control group, 13 upregulated and 12 downregulated tRNA-derived stress-induced RNAs (tiRNAs) were observed in the long-term PS-NP (50 μg/mL) exposure group. Bioinformatics analysis indicated that differentially expressed tiRNAs targeted genes that were involved in vascular smooth muscle contraction and calcium signaling pathways. Interestingly, tiRNA-Glu-CTC was overexpressed in vivo and in vitro following PS-NP exposure. Functionally, the tiRNA-Glu-CTC inhibitor mitigated VSMC phenotypic switching and mitochondrial damage induced by PS-NP exposure, whereas tiRNA-Glu-CTC mimics had the opposite effect. Mechanistically, tiRNA-Glu-CTC mimics induced VSMC phenotypic switching by downregulating Cacna1f expression. PS-NP exposure promoted VSMC phenotypic switching and vascular injury by targeting the tiRNA-Glu-CTC/Cacna1f axis.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huichao Pan
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xueting Wang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Lei Song
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Zhou Y, Liu W, Jiang H, Chen F, Li Y, Gardea-Torresdey JL, Zhou XX, Yan B. Surface-Charge-Driven Ferroptosis and Mitochondrial Dysfunction Is Involved in Toxicity Diversity in the Marine Bivalve Exposed to Nanoplastics. ACS NANO 2024; 18:2370-2383. [PMID: 38189275 DOI: 10.1021/acsnano.3c10536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanoplastics (NPs) pervade daily life, posing serious threats to marine ecosystems. Despite the crucial role that surface charge plays in NP effects, there is a substantial gap in our understanding of how surface charge influences NP toxicity. Herein, by exposing Ruditapes philippinarum (R. philippinarum) to both positively charged NPs (p-NPs) and negatively charged NPs (n-NPs) at environmentally relevant particle number levels for a duration of 35 days, we unequivocally demonstrate that both types of NPs had discernible impacts on the clams depending on their surface charge. Through transcriptomic and proteomic analyses, we unveiled the primary mechanisms behind p-NP toxicity, which stem from induced mitochondrial dysfunction and ferroptosis. In contrast, n-NPs predominantly stimulated innate immune responses, influencing salivary secretion and modulating the complement and coagulation cascades. Furthermore, in vitro tests on clam immune cells confirmed that internalized p-NPs triggered alterations in mitochondrial morphology, a decrease in membrane potential, and the initiation of ferroptosis. Conversely, n-NPs, to a certain extent, moderated the expression of genes related to immune responses, thus mitigating their adverse effects. Taken together, these findings indicate that the differential surface-charge-driven ferroptosis and mitochondrial dysfunction in clams play a critical role in the toxicity profile of NPs, providing an insightful reference for assessing the ecological toxicity associated with NPs.
Collapse
Affiliation(s)
- Yanfei Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Hao Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Xiao-Xia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
15
|
Qian N, Gao X, Lang X, Deng H, Bratu TM, Chen Q, Stapleton P, Yan B, Min W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc Natl Acad Sci U S A 2024; 121:e2300582121. [PMID: 38190543 PMCID: PMC10801917 DOI: 10.1073/pnas.2300582121] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/24/2023] [Indexed: 01/10/2024] Open
Abstract
Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 μm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
| | - Huiping Deng
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | | | - Qixuan Chen
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY10032
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, New Brunswick, NJ08854
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
16
|
Han M, Zhu T, Liang J, Wang H, Zhu C, Lee Binti Abdullah A, Rubinstein J, Worthington R, George A, Li Y, Qin W, Jiang Q. Nano-plastics and gastric health: Decoding the cytotoxic mechanisms of polystyrene nano-plastics size. ENVIRONMENT INTERNATIONAL 2024; 183:108380. [PMID: 38141489 DOI: 10.1016/j.envint.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Gastrointestinal diseases exert a profound impact on global health, leading to millions of healthcare interventions and a significant number of fatalities annually. This, coupled with escalating healthcare expenditures, underscores the need for identifying and addressing potential exacerbating factors. One emerging concern is the pervasive presence of microplastics and nano-plastics in the environment, largely attributed to the indiscriminate usage of disposable plastic items. These nano-plastics, having infiltrated our food chain, pose a potential threat to gastrointestinal health. To understand this better, we co-cultured human gastric fibroblasts (HGF) with polystyrene nano-plastics (PS-NPs) of diverse sizes (80, 500, 650 nm) and meticulously investigated their cellular responses over a 24-hour period. Our findings revealed PS particles were ingested by the cells, with a notable increase in ingestion as the particle size decreased. The cellular death induced by these PS particles, encompassing both apoptosis and necrosis, showcased a clear dependence on both the particle size and its concentration. Notably, the larger PS particles manifested more potent cytotoxic effects. Further analysis indicated a concerning reduction in cellular membrane potential, alongside a marked increase in ROS levels upon PS particles exposure. This suggests a significant disruption of mitochondrial function and heightened oxidative stress. The larger PS particles were especially detrimental in causing mitochondrial dysfunction. In-depth exploration into the PS particles impact on genes linked with the permeability transition pore (PTP) elucidated that these PS particles instigated an internal calcium rush. This surge led to a compromise in the mitochondrial membrane potential, which in tandem with raised ROS levels, further catalyzed DNA damage and initiated cell death pathways. In essence, this study unveils the intricate mechanisms underpinning cell death caused by PS particles in gastric epithelial cells and highlighting the implications of PS particles on gastrointestinal health. The revelations from this research bear significant potential to shape future healthcare strategies and inform pertinent environmental policies.
Collapse
Affiliation(s)
- Mingming Han
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Tian Zhu
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | - Ji Liang
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Chenxi Zhu
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | | | - James Rubinstein
- Harvard University, College of Arts and Sciences, Cambridge, MA 02138, USA.
| | - Richard Worthington
- Stanford University, School of Humanities and Sciences, Stanford, CA 94305, USA.
| | - Andrew George
- University of Oxford, Department' of Biology, 11a Mansfield Road, OX12JD, UK.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
17
|
Wang R, Yue S, Huang C, Jia L, Tibihenda C, Li Z, Yu J. Visual mapping of global nanoplastics research progresses and hotspots: a scientometric assessment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114739-114755. [PMID: 37906331 DOI: 10.1007/s11356-023-30597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.
Collapse
Affiliation(s)
- Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Li Jia
- ISTO UMR7327, CNRS-Université d'Orleans-Brgm, 45071, Orléans, France
| | - Cevin Tibihenda
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China.
| |
Collapse
|
18
|
Gao S, Huang G, Zhang P, Xin X, Yin J, Han D, Song T, Rosendahl S, Read S. Rethinking the effects of micro/nanoplastics from the global environmental change and systematic perspective: An aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131695. [PMID: 37257375 DOI: 10.1016/j.jhazmat.2023.131695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The study on micro/nanoplastic pollution should embrace complexity. Here, we aim to develop an aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts (ACAM) to evaluate the effects of micro/nanoplastics on aquatic ecosystems from the global environmental change (GEC) and systematic perspective. A case study for freshwater systems in Saskatchewan, Canada was conducted to evaluate the comprehensive effects of multiple GEC factors (polystyrene-nanoplastics (PS-NPs), N, P, salinity, dissolved organic matter (DOM), pH, hardness) on Asterococcus superbus based on ten ecologically relevant endpoints. It is found that at the cellular level, PS-NPs and N had an antagonistic interaction on microalgal growth in the Saskatchewan freshwater ecosystem; at the molecular level, the PS-NP-induced changes in lipid composition in microalgae were regulated by P, DOM, and pH. The significance ranking of factor effects suggested that instead of PS-NPs pollution, the fluctuations in pH level, DOM and N concentrations should be paid attention to first in Saskatchewan. Under the combined impact of PS-NPs and other GEC factors, microalgae at station 14 (Qu'Appelle River near highway 56) might have the minimum growth rate with [-0.048, 0.094] d-1 in Saskatchewan. These findings demonstrate the efficacy of the developed ACAM in a more comprehensive and context-specific assessment of MNP risks, providing new insight for the management of MNP pollution.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3Z6, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tangnyu Song
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Scott Rosendahl
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| |
Collapse
|
19
|
Liu X, Yang J, Li Z. Transcriptomic analysis of oxidative stress mechanisms induced by acute nanoplastic exposure in Sepia esculenta larvae. Front Physiol 2023; 14:1250513. [PMID: 37614751 PMCID: PMC10442824 DOI: 10.3389/fphys.2023.1250513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Nanoplastics (NPs), as a new type of pollutant with a size small than 1 μm, are ubiquitous and harmful to organisms. There has been an increasing amount of research concerning the effects of NPs on organisms over recent years, especially on aquatic animals. However, there is a limited study on the impact of NPs on mollusk cephalopods. In this research, Sepia esculenta, belonging to Cephalopoda, Coleoidea, Sepioidea, was selected to explore the effects caused by NPs exposure. The S. esculenta larvae were exposed to polystyrene NPs (PS-NPs) with diameter 50 nm (100 mg/L) for 4 h. The detection of oxidative stress biomarkers displayed an obvious increase in SOD (superoxide dismutase) activity and MDA (malondialdehyde) level. Then, RNA-Seq was performed to explore the oxidative stress response at mRNA level. The transcriptome analysis demonstrated that the expression of 2,570 genes was affected by PS-NPs. Besides, the signaling pathways of ribosome, ribosome biogenesis in eukaryotes, proteasome, and MAPK were enriched. This study not only provides novel references for understanding the mechanisms of oxidative stress response induced by NPs, but also reminds us to follow with interest the influence of acute exposure to NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
20
|
Forest V, Pourchez J. Can the impact of micro- and nanoplastics on human health really be assessed using in vitro models? A review of methodological issues. ENVIRONMENT INTERNATIONAL 2023; 178:108115. [PMID: 37542783 DOI: 10.1016/j.envint.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Because of the many advantages they offer (strength, low cost, durability, lightweight, resistance, etc.), plastics are integral part of our daily life with a production constantly rising. However, their waste management is still inadequate, resulting in their release and accumulation in the environment, representing a main source of pollution. Their degradation results in debris of variable size including microplastics (0.1 μm-5 mm) and even nanoplastics (<0.1 μm), whose potential impact on ecosystems and human health have raised concerns. The potential adverse effects they may cause have been evaluated using both in vitro and in vivo models. However, due to some specific characteristics of micro- and nanoplastics, there are challenging questions about whether conventional in vitro tests are appropriate for evaluating their toxicity. For example, low-density plastics float on the surface of the culture medium and cannot come into contact with cells adhering to the bottom of the culture plates, which prevents proper evaluation of potential adverse effects and leads to misinterpretation of toxicological assays. In this review, we discuss the main issues related to the evaluation of micro- and nanoplastics toxicity using conventional in vitro assays. A literature survey has allowed to propose some solutions to circumvent these issues including the use of mathematical models to accurately determine the dose of particles delivered to cells, advanced 3D models (organoids), inverted cell culture models, cell cultures at the air-liquid interface or under dynamic conditions. Finally, we propose some perspectives and recommendations for further research on the in vitro evaluation of micro- and nanoplastics toxicity, underlining the importance of using standardized protocols for comparison purposes and samples and experimental conditions more representative of real-life exposure.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
21
|
Kaur J, Kelpsiene E, Gupta G, Dobryden I, Cedervall T, Fadeel B. Label-free detection of polystyrene nanoparticles in Daphnia magna using Raman confocal mapping. NANOSCALE ADVANCES 2023; 5:3453-3462. [PMID: 37383076 PMCID: PMC10295233 DOI: 10.1039/d3na00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Micro- and nanoplastic pollution has emerged as a global environmental problem. Moreover, plastic particles are of increasing concern for human health. However, the detection of so-called nanoplastics in relevant biological compartments remains a challenge. Here we show that Raman confocal spectroscopy-microscopy can be deployed for the non-invasive detection of amine-functionalized and carboxy-functionalized polystyrene (PS) nanoparticles (NPs) in Daphnia magna. The presence of PS NPs in the gastrointestinal (GI) tract of D. magna was confirmed by using transmission electron microscopy. Furthermore, we investigated the ability of NH2-PS NPs and COOH-PS NPs to disrupt the epithelial barrier of the GI tract using the human colon adenocarcinoma cell line HT-29. To this end, the cells were differentiated for 21 days and then exposed to PS NPs followed by cytotoxicity assessment and transepithelial electrical resistance measurements. A minor disruption of barrier integrity was noted for COOH-PS NPs, but not for the NH2-PS NPs, while no overt cytotoxicity was observed for both NPs. This study provides evidence of the feasibility of applying label-free approaches, i.e., confocal Raman mapping, to study PS NPs in a biological system.
Collapse
Affiliation(s)
- Jasreen Kaur
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| | - Egle Kelpsiene
- NanoLund, Department of Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| | - Illia Dobryden
- Department of Material and Surface Design, RISE Research Institutes of Sweden Stockholm Sweden
| | - Tommy Cedervall
- NanoLund, Department of Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| |
Collapse
|
22
|
Pelegrini K, Pereira TCB, Maraschin TG, Teodoro LDS, Basso NRDS, De Galland GLB, Ligabue RA, Bogo MR. Micro- and nanoplastic toxicity: A review on size, type, source, and test-organism implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162954. [PMID: 36948318 DOI: 10.1016/j.scitotenv.2023.162954] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Polymeric wastes are among the current major environmental problems due to potential pollution and contamination. Within the spectrum of polymeric waste, microplastics (MPs) and nanoplastics (NPs) have gained ground in recent research since these particles can affect the local biota, inducing toxic effects on several organisms. Different outcomes have been reported depending on particle sizes, shape, types, and exposed organisms and conditions, among other variables. This review aimed to compile and discuss the current knowledge and possible literature gaps regarding the MPs and NPs generation and their toxicological effects as stressors, considering polymer type (as polyethylene, polypropylene, polyethylene terephthalate, polystyrene, polyvinyl chloride, or others), size (micro- or nano-scale), source (commercial, lab-synthesized, or environmental) and test organism group. In that sense, 615 publications were analyzed, among which 72 % discussed micro-sized plastics, while <28 % assayed the toxicity of NPs (<1 μm). For most polymers, MPs and NPs were commercially purchased and used without additional size reduction processes; except for polyethylene terephthalate studies that mostly used grinding and cutting methods to obtain MPs. Polystyrene (PS) was the main polymer studied, as both MPs and NPs. PS accounts for >90 % of NPs reports evaluated, reflecting a major literature gap if compared to its 35.3 % share on MPs studies. Among the main organisms, arthropods and fish combined accounted for nearly 40 % of toxicity testing. Overall, the different types of plastics showed a tendency to report toxic effects, except for the 'Survival/lethality' category, which might indicate that polymeric particles induce mostly sublethal toxic effects. Furthermore, despite differences in publication numbers, we observed greater toxicity reported for NPs than MPs with oxidative stress among the majorly investigated endpoints. This study allowed a hazard profile overview of micro/nanoplastics (MNPs) and the visualization of literature gaps, under a broad diversity of toxicological evidence.
Collapse
Affiliation(s)
- Kauê Pelegrini
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Thuany Garcia Maraschin
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Lilian De Souza Teodoro
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil
| | - Nara Regina De Souza Basso
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil
| | - Griselda Ligia Barrera De Galland
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP: 91570-970 Porto Alegre, RS, Brazil.
| | - Rosane Angelica Ligabue
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Mauricio Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Tang M, Ding G, Li L, Xiao G, Wang D. Exposure to polystyrene nanoparticles at predicted environmental concentrations enhances toxic effects of Acinetobacter johnsonii AC15 infection on Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115131. [PMID: 37315368 DOI: 10.1016/j.ecoenv.2023.115131] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Nanoplastics and microbial pathogens are both widely distributed in the environment; however, their combined toxicity remains largely unclear. Using Caenorhabditis elegans as an animal model, we examined the possible effect of exposure to polystyrene nanoparticle (PS-NP) in Acinetobacter johnsonii AC15 (a bacterial pathogen) infected animals. Exposure to PS-NP at the concentrations of 0.1-10 μg/L significantly enhanced the toxicity of Acinetobacter johnsonii AC15 infection on lifespan and locomotion behaviors. In addition, after exposure to 0.1-10 μg/L PS-NP, the accumulation of Acinetobacter johnsonii AC15 in body of nematodes was also increased. Meanwhile, the innate immune response indicated by the increase of antimicrobial gene expressions in Acinetobacter johnsonii AC15 infected nematodes was suppressed by exposure to 0.1-10 μg/L PS-NP. Moreover, expressions of egl-1, dbl-1, bar-1, daf-16, pmk-1, and elt-2 governing the bacterial infection and immunity in Acinetobacter johnsonii AC15 infected nematodes were further inhibited by exposure to 0.1-10 μg/L PS-NP. Therefore, our data suggested the possible exposure risk of nanoplastic at predicted environmental concentrations in enhancing the toxic effects of bacterial pathogens on environmental organisms.
Collapse
Affiliation(s)
- Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guoying Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Liane Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China.
| | - Dayong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China; Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Mukherjee F, Shi A, Wang X, You F, Abbott NL. Liquid Crystals as Multifunctional Interfaces for Trapping and Characterizing Colloidal Microplastics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207802. [PMID: 36892170 DOI: 10.1002/smll.202207802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Identifying and removing microplastics (MPs) from the environment is a global challenge. This study explores how the colloidal fraction of MPs assemble into distinct 2D patterns at aqueous interfaces of liquid crystal (LC) films with the goal of developing surface-sensitive methods for identifying MPs. Polyethylene (PE) and polystyrene (PS) microparticles are measured to exhibit distinct aggregation patterns, with addition of anionic surfactant amplifying differences in PS/PE aggregation patterns: PS changes from a linear chain-like morphology to a singly dispersed state with increasing surfactant concentration whereas PE forms dense clusters at all surfactant concentrations. Statistical analysis of assembly patterns using deep learning image recognition models yields accurate classification, with feature importance analysis confirming that dense, multibranched assemblies are unique features of PE relative to PS. Microscopic characterization of LC ordering at the microparticle surfaces leads to predict LC-mediated interactions (due to elastic strain) with a dipolar symmetry, a prediction consistent with the interfacial organization of PS but not PE. Further analysis leads to conclude that PE microparticles, due to their polycrystalline nature, possess rough surfaces that lead to weak LC elastic interactions and enhanced capillary forces. Overall, the results highlight the potential utility of LC interfaces for rapid identification of colloidal MPs based on their surface properties.
Collapse
Affiliation(s)
- Fiona Mukherjee
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anye Shi
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Fengqi You
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Vela L, Villacorta A, Venus T, Estrela-Lopis I, Pastor S, García-Rodriguez A, Rubio L, Marcos R, Hernández A. The potential effects of in vitro digestion on the physicochemical and biological characteristics of polystyrene nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121656. [PMID: 37075918 DOI: 10.1016/j.envpol.2023.121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The presence of plastic waste in our environment has continued growing and become an important environmental concern. Because of its degradation into micro- and nanoplastics (MNPLs), MNPLs are becoming environmental pollutants of special environmental/health concern. Since ingestion is one of the main exposure routes to MNPLs, the potential effects of digestion on the physicochemical/biological characteristics of polystyrene nanoplastics (PSNPLs) were determined. The results indicated a high tendency of digested PSNPLs to agglomerate and a differential presence of proteins on their surface. Interestingly, digested PSNPLs showed greater cell uptake than undigested PSNPLs in all three tested cell lines (TK6, Raji-B, and THP-1). Despite these differences in cell uptake, no differences in toxicity were observed except for high and assumed unrealistic exposures. When oxidative stress and genotoxicity induction were determined, the low effects observed after exposure to undigested PDNPLs were not observed in the digested ones. This indicated that the greater ability of digested PSNPLs to internalize was not accompanied by a greater hazard. This type of analysis should be performed with other MNPLs of varying sizes and chemical compositions.
Collapse
Affiliation(s)
- Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Facultad de Ciencias de La Salud, Eugenio Espejo. Universidad UTE, Avenida Occidental y Mariana de Jesús, Quito, Ecuador
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Tom Venus
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Alba García-Rodriguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de Los Caballeros, Dominican Republic
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| |
Collapse
|
26
|
Coman V, Scurtu VF, Coman C, Clapa D, Iancu ȘD, Leopold N, Leopold LF. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107634. [PMID: 36965317 DOI: 10.1016/j.plaphy.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) as environmental contaminants have received increased attention in recent years. Numerous studies have suggested possible negative effects of plants exposure to NPs, but more data are needed with various plants under different exposure conditions to clarify the underlying phytotoxicity mechanisms. In this study, we investigated the effect of polystyrene nanoplastics (PSNPs; 28.65 nm average diameter) exposure (10, 100 and 250 mg/L) on plant morphology and production of relevant metabolites (steviol glycosides, chlorophylls, carotenoids, and vitamins) of in vitro-grown Stevia rebaudiana plantlets. Additionally, we used dark field microscopy combined with fluorescence hyperspectral imaging for the visualization of internalized PSNPs inside plant tissues. At higher concentrations (>100 mg/L), PSNPs were shown to aggregate in roots and to be transported to leaves, having a significantly negative impact on plant growth (reduced size and biomass), while increasing the production of metabolites compared to controls, most probably because of response to stress. The production of steviol glycosides presented a biphasic dose-response suggestive of hormesis, with the highest values at 10 mg/L PSNPs (1.5-2.2-fold increase compared to controls), followed by a decline in production at higher concentrations (100 and 250 mg/L), but with values comparable to controls. These results are promising for future in vivo studies evaluating the effect of NP exposure on the production of steviol glycosides, the natural sweeteners from stevia.
Collapse
Affiliation(s)
- Vasile Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Violeta-Florina Scurtu
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Doina Clapa
- Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Ștefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084, Cluj-Napoca, Romania.
| | - Loredana-Florina Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
27
|
Jemec Kokalj A, Heinlaan M, Novak S, Drobne D, Kühnel D. Defining Quality Criteria for Nanoplastic Hazard Evaluation: The Case of Polystyrene Nanoplastics and Aquatic Invertebrate Daphnia spp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:536. [PMID: 36770497 PMCID: PMC9919956 DOI: 10.3390/nano13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene nanoparticles are the most investigated type of nanoplastics in environmental hazard studies. It remains unclear whether nanoplastic particles pose a hazard towards aquatic organisms. Thus, it was our aim to investigate whether the existing studies and data provided therein are reliable in terms of data completeness. We used the example of Daphnia spp. studies for the purpose of polystyrene nanoplastic (nanoPS) hazard evaluation. First, a set of quality criteria recently proposed for nanoplastic ecotoxicity studies was applied. These rather general criteria for all types of nanoplastics and different test organisms were then, in the second step, tailored and refined specifically for Daphnia spp. and nanoPS. Finally, a scoring system was established by setting mandatory (high importance) as well as desirable (medium importance) criteria and defining a threshold to pass the evaluation. Among the existing studies on nanoPS ecotoxicity for Daphnia spp. (n = 38), only 18% passed the evaluation for usability in hazard evaluation. The few studies that passed the evaluation did not allow for conclusions on the hazard potential of nanoPS because there was no consensus among the studies. The greatest challenge we identified is in data reporting, as only a few studies presented complete data for hazard evaluation.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 03418 Leipzig, Germany
| |
Collapse
|
28
|
Schmidt A, Mühl M, Brito WADS, Singer D, Bekeschus S. Antioxidant Defense in Primary Murine Lung Cells following Short- and Long-Term Exposure to Plastic Particles. Antioxidants (Basel) 2023; 12:antiox12020227. [PMID: 36829786 PMCID: PMC9952747 DOI: 10.3390/antiox12020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Polystyrene nano- and micro-sized plastic particles (NMP) are one of the common plastic materials produced that dramatically pollute the environment, water, and oceanic habitats worldwide. NMP are continuously absorbed by the body through a number of routes, especially via intestinal ingestion, dermal uptake, and inhalation into the lung. Several studies provided evidence of NMP provoking oxidative stress and affecting cellular responses. Yet, the NMP effects on primary lung cells have not been studied. To this end, we isolated and cultured murine lung cells and exposed them short-term or long-term to polystyrene 0.2-6.0 µm-sized NMP. We studied cellular consequences regarding oxidative stress, morphology, and secretion profiling. Visualization, distribution, and expression analyses confirmed lung cells accumulating NMP and showed several significant correlations with particle size. Moreover, we found substantial evidence of biological consequences of small-scale NMP uptake in lung cells. Besides alterations of cytokine secretion profiles resulting in inflammatory responses, indicators of oxidative stress were identified that were accompanied by Nrf2 and β-catenin signaling changes. Our results serve as an important basis to point out the potential hazards of plastic contaminations and uptake in lung cells.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Melissa Mühl
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86020-000, Brazil
| | - Debora Singer
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|