1
|
Chen HJ, Wang L, Zhu H, Wang ZG, Liu SL. NIR-II Fluorescence Imaging for In Vivo Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28011-28028. [PMID: 38783516 DOI: 10.1021/acsami.4c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Chen M, Zhang Z, Lin R, Liu J, Xie M, He X, Zheng C, Kang M, Li X, Feng HT, Lam JWY, Wang D, Tang BZ. A planar electronic acceptor motif contributing to NIR-II AIEgen with combined imaging and therapeutic applications. Chem Sci 2024; 15:6777-6788. [PMID: 38725487 PMCID: PMC11077540 DOI: 10.1039/d3sc06886b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Designing molecules with donor-acceptor-donor (D-A-D) architecture plays an important role in obtaining second near-infrared region (NIR-II, 1000-1700 nm) fluorescent dyes for biomedical applications; however, this always comes with a challenge due to very limited electronic acceptors. On the other hand, to endow NIR-II fluorescent dyes with combined therapeutic applications, trivial molecular design is indispensable. Herein, we propose a pyrazine-based planar electronic acceptor with a strong electron affinity, which can be used to develop NIR-II fluorescent dyes. By structurally attaching two classical triphenylamine electronic donors to it, a basic D-A-D module, namely Py-NIR, can be generated. The planarity of the electronic acceptor is crucial to induce a distinct NIR-II emission peaking at ∼1100 nm. The unique construction of the electronic acceptor can cause a twisted and flexible molecular conformation by the repulsive effect between the donors, which is essential to the aggregation-induced emission (AIE) property. The tuned intramolecular motions and twisted D-A pair brought by the electronic acceptor can lead to a remarkable photothermal conversion with an efficiency of 56.1% and induce a type I photosensitization with a favorable hydroxyl radical (OH˙) formation. Note that no additional measures are adopted in the molecular design, providing an ideal platform to realize NIR-II fluorescent probes with synergetic functions based on such an acceptor. Besides, the nanoparticles of Py-NIR can exhibit excellent NIR-II fluorescence imaging towards orthotopic 4T1 breast tumors in living mice with a high sensitivity and contrast. Combined with photothermal imaging and photoacoustic imaging caused by the thermal effect, the imaging-guided photoablation of tumors can be well performed. Our work has created a new opportunity to develop NIR-II fluorescent probes for accelerating biomedical applications.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Zhijun Zhang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Runfeng Lin
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Meizhu Xie
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Xiang He
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Canze Zheng
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Miaomiao Kang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xue Li
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Photochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Dong Wang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-SZ) Guangdong China
| |
Collapse
|
3
|
Zeng Y, Qu J, Wu G, Zhao Y, Hao J, Dong Y, Li Z, Shi J, Francisco JS, Zheng X. Two Key Descriptors for Designing Second Near-Infrared Dyes and Experimental Validation. J Am Chem Soc 2024; 146:9888-9896. [PMID: 38546165 DOI: 10.1021/jacs.3c14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Second near-infrared (NIR-II) optical imaging technology has emerged as a powerful tool for diagnostic and image-guided surgery due to its higher imaging contrast. However, a general strategy for efficiently designing NIR-II organic molecules is still lacking, because NIR-II dyes are usually difficult to synthesize, which has impeded the rapid development of NIR-II bioprobes. Herein, based on the theoretical calculations on 62 multiaryl-pyrrole (MAP) systems with spectra ranging from the visible to the NIR-II region, a continuous red shift of the spectra toward the NIR-II region could be achieved by adjusting the type and site of substituents on the MAPs. Two descriptors (ΔEgs and μgs) were identified as exhibiting strong correlations with the maximum absorption/emission wavelengths, and the descriptors could be used to predict the emission spectrum in the NIR-II region only if ΔEgs ≤ 2.5 eV and μgs ≤ 22.55 D. The experimental absorption and emission spectra of ten MAPs fully confirmed the theoretical predictions, and biological imaging in vivo of newly designed MAP23-BBT showed high spatial resolution in the NIR-II region in deep tissue angiography. More importantly, both descriptors of ΔEgs and μgs have shown general applicability to most of the reported donor-acceptor-donor-type non-MAP NIR-II dyes. These results have broad implications for the efficient design of NIR-II dyes.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaman Hao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Bian S, Zheng X, Liu W, Gao Z, Wan Y, Li J, Ren H, Zhang W, Lee CS, Wang P. pH-Responsive NIR-II phototheranostic agents for in situ tumor vascular monitoring and combined anti-vascular/photothermal therapy. Biomaterials 2023; 303:122380. [PMID: 37925793 DOI: 10.1016/j.biomaterials.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Developing nanoplatforms integrating superior fluorescence imaging ability in second near-infrared (NIR-II) window and tumor microenvironment responsive multi-modal therapy holds great potential for real-time feedback of therapeutic efficacy and optimizing tumor inhibition. Herein, we developed a pH-sensitive pyrrolopyrrole aza-BODIPY-based amphiphilic molecule (PTG), which has a balanced NIR-II fluorescence brightness and photothermal effect. PTG is further co-assembled with a vascular disrupting agent (known as DMXAA) to prepare PTDG nanoparticles for combined anti-vascular/photothermal therapy and real-time monitoring of the tumor vascular disruption. Each PTG molecule has an active PT-3 core which is linked to two PEG chains via pH-sensitive ester bonds. The cleavage of ester bonds in the acidic tumor environment would tricker releases of DMXAA for anti-vascular therapy and further assemble PT-3 cores into micrometer particles for long term monitoring of the tumor progression. Furthermore, benefiting from the high brightness in the NIR-II region (119.61 M-1 cm-1) and long blood circulation time (t1/2 = 235.6 min) of PTDG nanoparticles, the tumor vascular disrupting process can be in situ visualized in real time during treatment. Overall, this study demonstrates a self-assembly strategy to build a pH-responsive NIR-II nanoplatform for real-time monitoring of tumor vascular disruption, long-term tracking tumor progression and combined anti-vascular/photothermal therapy.
Collapse
Affiliation(s)
- Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jihao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int J Mol Sci 2023; 24:16949. [PMID: 38069279 PMCID: PMC10707236 DOI: 10.3390/ijms242316949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tumors are a major public health issue of concern to humans, seriously threatening the safety of people's lives and property. With the increasing demand for early and accurate diagnosis and efficient treatment of tumors, noninvasive optical imaging (including fluorescence imaging and photoacoustic imaging) and tumor synergistic therapies (phototherapy synergistic with chemotherapy, phototherapy synergistic with immunotherapy, etc.) have received increasing attention. In particular, light in the near-infrared second region (NIR-II) has triggered great research interest due to its penetration depth, minimal tissue autofluorescence, and reduced tissue absorption and scattering. Nanomaterials with many advantages, such as high brightness, great photostability, tunable photophysical properties, and excellent biosafety offer unlimited possibilities and are being investigated for NIR-II tumor imaging-guided synergistic oncotherapy. In recent years, many researchers have tried various approaches to investigate nanomaterials, including gold nanomaterials, two-dimensional materials, metal sulfide oxides, polymers, carbon nanomaterials, NIR-II dyes, and other nanomaterials for tumor diagnostic and therapeutic integrated nanoplatform construction. In this paper, the application of multifunctional nanomaterials in tumor NIR-II imaging and collaborative therapy in the past three years is briefly reviewed, and the current research status is summarized and prospected, with a view to contributing to future tumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| |
Collapse
|
6
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
7
|
Bian S, Zheng X, Liu W, Li J, Gao Z, Ren H, Zhang W, Lee CS, Wang P. Pyrrolopyrrole aza-BODIPY-based NIR-II fluorophores for in vivo dynamic vascular dysfunction visualization of vascular-targeted photodynamic therapy. Biomaterials 2023; 298:122130. [PMID: 37146363 DOI: 10.1016/j.biomaterials.2023.122130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Real-time monitoring vascular responses is crucial for evaluating the therapeutic effects of vascular-targeted photodynamic therapy (V-PDT). Herein, we developed a highly-stable and bright aggregation induced emission (AIE) fluorophore (PTPE3 NP) for dynamic fluorescence (FL) imaging of vascular dysfunction beyond 1300 nm window during V-PDT. The superior brightness (ϵmaxΦf>1000 nm ≈ 180.05 M-1 cm-1) and high resolution of PTPE3 NP affords not only high-clarity images of whole-body and local vasculature (hindlimbs, mesentery, and tumor) but also high-speed video imaging for tracking blood circulation process. By virtue of the NPs' prolonged blood circulation time (t1/2 ≈ 86.5 min) and excellent photo/chemical (pH, RONS) stability, mesenteric and tumor vascular dysfunction (thrombosis formation, vessel occlusion, and hemorrhage) can be successfully visualized during V-PDT by FL imaging for the first time. Furthermore, the reduction of blood flow velocity (BFV) can be monitored in real time for precisely evaluating efficacy of V-PDT. These provide a powerful approach for assessing vascular responses during V-PDT and promote the development of advanced fluorophores for biological imaging.
Collapse
Affiliation(s)
- Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jihao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Yu H, Wang Y, Chen Y, Cui M, Yang F, Wang P, Ji M. Transmissible H-aggregated NIR-II fluorophore to the tumor cell membrane for enhanced PTT and synergistic therapy of cancer. NANO CONVERGENCE 2023; 10:3. [PMID: 36609947 PMCID: PMC9823176 DOI: 10.1186/s40580-022-00352-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) combined with second near-infrared (NIR-II) fluorescence imaging (FI) has received increasing attention owing to its capacity for precise diagnosis and real-time monitoring of the therapeutic effects. It is of great clinical value to study organic small molecular fluorophores with both PTT and NIR-II FI functions. In this work, we report a skillfully fluorescent lipid nanosystem, the RR9 (RGDRRRRRRRRRC) peptide-coated anionic liposome loaded with organic NIR-II fluorophore IR-1061 and chemotherapeutic drug carboplatin, which is named RRIALP-C4. According to the structural interaction between IR-1061 and phospholipid bilayer demonstrated by molecular dynamics simulations, IR-1061 is rationally designed to possess the H-aggregated state versus the free state, thus rendering RRIALP-C4 with the activated dual-channel integrated function of intravital NIR-II FI and NIR-I PTT. Functionalization of RRIALP-C4 with RR9 peptide endows the specifically targeting capacity for αvβ3-overexpressed tumor cells and, more importantly, allows IR-1061 to transfer the H-aggregated state from liposomes to the tumor cell membrane through enhanced membrane fusion, thereby maintaining its PTT effect in tumor tissues. In vivo experiments demonstrate that RRIALP-C4 can effectively visualize tumor tissues and systemic blood vessels with a high sign-to-background ratio (SBR) to realize the synergistic treatment of thermochemotherapy by PTT synergistically with temperature-sensitive drug release. Therefore, the strategy of enhanced PTT through H-aggregation of NIR-II fluorophore in the tumor cell membrane has great potential for developing lipid nanosystems with integrated diagnosis and treatment function.
Collapse
Affiliation(s)
- Haoli Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuesong Wang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Chen
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengyuan Cui
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Min Ji
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
9
|
Yan T, Alimu G, Zhu L, Fan H, Zhang L, Du Z, Ma R, Chen S, Alifu N, Zhang X. PpIX/IR-820 Dual-Modal Therapeutic Agents for Enhanced PDT/PTT Synergistic Therapy in Cervical Cancer. ACS OMEGA 2022; 7:44643-44656. [PMID: 36530282 PMCID: PMC9753516 DOI: 10.1021/acsomega.2c02977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 05/10/2023]
Abstract
High treatment accuracy is the key to efficient cancer treatment. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of popular, precise treatment methods. The combination of photodynamic and photothermal therapy (PDT/PTT) can greatly enhance the precise therapeutic efficacy. In this work, protoporphyrin IX (PpIX) was selected as the PDT agent (photosensitizer), and new indocyanine green (IR-820) was selected as the PTT agent. Further, the two kinds of theranostic agents were encapsulated by biological-membrane-compatible liposomes to form PpIX-IR-820@Lipo nanoparticles (NPs), a new kind of PDT/PTT agent. The PpIX-IR-820@Lipo NPs exhibited good water solubility, a spherical shape, and high fluorescence peak emission in the near-infrared spectral region (700-900 nm, NIR). The cellular toxicity of PpIX-IR-820@Lipo NPs for human cervical cancer cells (HeLa) and human cervical epithelial cells (H8) was detected by the CCK-8 method, and low cytotoxicity was observed for the PpIX-IR-820@Lipo NPs. Then, the excellent cellular uptake of PpIX-IR-820@Lipo NPs was confirmed by laser scanning confocal microscopy. Moreover, the PDT/PTT property of PpIX-IR-820@Lipo NPs was illustrated via 2',7'-dichlorofluorescin diacetate (DCFH-DA) and annexin V-fluorescein isothiocyanate (annexin V-FITC), as indicator probes. The PDT/PTT synergistic efficiency of PpIX-IR-820@Lipo NPs on HeLa cells was verified, exhibiting a high efficiency of 70.5%. Thus, the novel theranostic PpIX-IR-820@Lipo NPs can be used as a promising PDT/PTT synergistic theranostic nanoplatform in future cervical cancer treatment.
Collapse
Affiliation(s)
- Ting Yan
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Gulinigaer Alimu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Lijun Zhu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Huimin Fan
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Linxue Zhang
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Zhong Du
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Rong Ma
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Shuang Chen
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Nuernisha Alifu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Xueliang Zhang
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| |
Collapse
|
10
|
The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications. Anal Bioanal Chem 2022:10.1007/s00216-022-04463-z. [PMID: 36445453 DOI: 10.1007/s00216-022-04463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
As fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) has gained increasing attention, it is inevitable that NIR-II fluorophores, the cornerstone of NIR-II imaging, have come to the middle of the stage. NIR-II xanthenoid fluorophores with good stability, high brightness, and fluorescence adjustability are becoming popular. We here reviewed the recent progress of xanthenoid fluorophores with NIR-II emission for in vivo applications. Especially, we focus on the strategies used for longer wavelength and fluorescence regulation to construct OFF-ON or ratiometric NIR-II fluorescent probes.
Collapse
|