1
|
Liang H, Chen M, Feng Y, Meng G, Zhang J, Liu W, Liu X. Construction of a Heterostructured Alloy-Molybdenum Nitride Catalyst for Enhanced NH 3 Production via Nitrate Electrolysis. Inorg Chem 2025. [PMID: 39807950 DOI: 10.1021/acs.inorgchem.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Here, we reported a highly efficient nitrate electroreduction (NO3RR) electrocatalyst that integrated alloying and heterostructuring strategies comprising FeCo alloy and Mo0.82N (FeCo-Mo0.82N/NC). Notably, the maximum NH3 Faraday efficiency (FE) of 83.24%, NH3 yield of 12.28 mg h-1 mgcat.-1, and good stability were achieved over FeCo-Mo0.82N/NC. Moreover, a Zn-NO3- battery assembled with FeCo-Mo0.82N/NC exhibited a power density of 0.87 mW cm-2, an NH3 yield of 14.09 mg h-1 mgcat.-1, and a FE as high as 76.31%.
Collapse
Affiliation(s)
- Hanwen Liang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Mingying Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Yanhong Feng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jingwen Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xijun Liu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
2
|
Zhang Y, Ma J, Wang B, Lv A, Zhang Q, Zhuo S. Aldehyde Directed In Situ Loading of Ag Nanodots Around the Open Metal Sites of MOFs for the Tandem Catalysis of Nitrate to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408602. [PMID: 39523753 DOI: 10.1002/smll.202408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both spatial arrangement and intrinsic activity of electrocatalysts with dual-active sites are widely designed to match the coupling reaction between nitrate and water, in which most of the reactive intermediates can be optimized to achieve a high yield rate of ammonia. Herein, by introducing the aldehyde group inside metal-organic frameworks (MOFs) in advance, an aldehyde-induced method is achieved to direct the in situ nucleation of Ag nanodots depending on the mesopores of MOFs via a simple silver mirror reaction. The key point here is that the spatial arrangement between the aldehyde group and open metal sites is fixed end to end, which makes the aldehyde group a built-in redox-active site to drive the in situ nucleation of Ag nanodots next to the open metal sites of MOFs. Accordingly, by varying the metal sites of MOFs, a group of M-MOFs@Ag (M = Fe, Co, Ni, Cu, etc.) hybrids with dual active sites are acquired. Taking Ni-MOFs@Ag as an example, the interaction between Ni2+ and Ag sites makes it available for the tandem catalysis of nitrate-to-ammonia, in which the H· and NO2 - generated on the open Ni2+ sites and Ag nanodots, respectively, can migrate to each other to evolve into ammonia.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Anqi Lv
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
3
|
Zhang L, Wang R, Liang Li G, Niu H, Bai Y, Jiao T, Zhang X, Liu R, Streb C, Yuan M, Zhang G. Boosting electrocatalytic ammonia synthesis from nitrate by asymmetric chemical potential activated interfacial electric fields. J Colloid Interface Sci 2024; 676:636-646. [PMID: 39053411 DOI: 10.1016/j.jcis.2024.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3- RR) has immense potential to alleviate the problem of groundwater pollution and may also become a key route for the environmentally benign production of ammonia (NH3) products. Here, the unique effects of interfacial electric fields arising from asymmetric chemical potentials and local defects were integrated into the binary Bi2S3-Bi2O3 sublattices for enhancing electrocatalytic nitrate reduction reactions. The obtained binary system showed a superior Faraday efficiency (FE) for ammonia production of 94 % and an NH3 yield rate of 89.83 mg gcat-1h-1 at -0.4 V vs. RHE. Systematic experimental and computational results confirmed that the concerted interplay between interfacial electric fields and local defects not only promoted the accumulation and adsorption of NO3-, but also contributed to the destabilization of *NO and the subsequent deoxygenation hydrogenation reaction. This work will stimulate future designs of heterostructured catalysts for efficient electrocatalytic nitrate reduction reactions.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Runzhi Wang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guo Liang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hexu Niu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; National Energy Center for Coal to Liquids, Synfuels China Technology C. Ltd, Beijing 101400, PR China
| | - Tianao Jiao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Xuehua Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Rongji Liu
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China.
| | - Guangjin Zhang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
4
|
Zhang M, Cheng X, Yao X, Chu J, Bai F, Sun C, Wang YQ. Iron and nickel based alloy nanoparticles anchored on phosphorus-modified carbon-nitrogen plane enhances electrochemical nitrate reduction to ammonia. J Colloid Interface Sci 2024; 680:632-642. [PMID: 39531881 DOI: 10.1016/j.jcis.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The catalysts of iron and nickel nanoparticles anchored on carbon-nitrogen plane (FeNi-CN) are considered as the potential candidates for promising electrochemical nitrate reduction to ammonia (ENO3RR). However, the high d-orbital energy levels of iron and nickel sites coordinated with nitrogen atoms often lead to overly strong adsorption of reaction intermediates on active sites, severely limiting the improvement of catalytic performance. Herein, a catalyst FeNi3@P-NC consisting FeNi3 alloy nanoparticles confined in phosphorus (P)-modified carbon-nitrogen plane is successfully fabricated, where the electron withdrawal effect induced by P on the carbon-nitrogen plane decreases the d-orbital energy, and optimizes the d-band center of FeNi alloy, thus weakening the overly strong adsorption of intermediates at the metal-N sites and thereby improving NO3RR activity. The prepared FeNi3@P-NC catalyst exhibits exceptional NO3RR performance with a 93 ± 4.5 % Faradaic efficiency of NH3 production (FENH3) and a high NH3 yield rate (YNH3) of 9633 ± 227.3 μg h-1 cm-2 at -0.7 V versus Reversible Hydrogen Electrode (vs. RHE) under alkaline medium. Importantly, FeNi3@P-NC also demonstrates superior catalytic stability and durability, which maintains stability over twenty-five successive electrochemical cycles and for 50 h of continuous electrolysis at 100 mA cm-2.
Collapse
Affiliation(s)
- Meng Zhang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Xuetao Cheng
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiaoman Yao
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Jianyi Chu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
5
|
Zhao J, Li K, Xu J, Ren X, Shi L. Coherent NiS 2@SnS 2nanosheet for accelerating electrocatalytic nitrate reduction to ammonia. NANOTECHNOLOGY 2024; 36:02LT01. [PMID: 39445705 DOI: 10.1088/1361-6528/ad86c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The development of an effective and selective catalyst is the key to improving the multi-electron transfer nitrate reduction reaction (NO3-RR) to ammonia. Here, we synthesized a coherent NiS2@SnS2nanosheet catalyst loaded on carbon cloth via one-step solvothermal method. Experimental data reveals that the integration of NiS2and SnS2can enhance the NO3-RR performance in terms of high NH3yield rate of 408.2μg h-1cm-2and Faradaic efficiency of 89.61%, as well as satisfying cycling and long-time stability.
Collapse
Affiliation(s)
- Jinxiu Zhao
- Emerging Industries Institute, Shanghai University, Jiaxing 314050, Zhejiang, People's Republic of China
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, People's Republic of China
| | - Kai Li
- Shandong LiaoTai Environmental Technology Co., LTD, Liaocheng 252000, Shandong, People's Republic of China
| | - Jingyi Xu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Liyi Shi
- Emerging Industries Institute, Shanghai University, Jiaxing 314050, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Ji J, Lin L, Hu Y, Xu J, Li Z. Thermally Stable Oxide-Capsulated Metal Nanoparticles Structure for Strong Metal-Support Interaction via Ultrafast Laser Plasmonic Nanowelding. SMALL METHODS 2024; 8:e2301612. [PMID: 39031877 DOI: 10.1002/smtd.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding. Under the strong localized electromagnetic field interaction, metal (Au) NPs are dragged by an optical force toward oxide NPs (TiO2). Intense energy is simultaneously injected into this heterojunction area, where TiO2 is precisely ablated. With the embedding of metal into oxide, optical force on Au gradually turned from attractive to repulsive due to the varied metal-dielectric environment. Meanwhile, local ablated oxides are redeposited on Au NP. Upon the whole coverage of metal NP, the implantation behavior of metal NP is stopped, resulting in a controlled metal-oxide eccentric structure with capsulated oxide layer thickness ≈0.72-1.30 nm. These oxide-capsulated metal NPs structures can preserve their configurations even after thermal annealing in air at 600 °C for 10 min. This ultrafast laser plasmonic nanowelding can also extend to oxide-capsulated metal nanostructure fabrication with broad materials combinations (e.g., Au/ZnO, Au/MgO, etc.), which shows great potential in designing/constructing nanoscale high-performance catalysts.
Collapse
Affiliation(s)
- Junde Ji
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Hu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Xu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Sun C, Xiao Y, Liu X, Hu J, Zhao Q, Yin Z, Cao S. Three-Dimensional Porous Cu/Cu 2+1O Nanosheet Arrays Promote Electrochemical Nitrate-to-Ammonia Conversion. Inorg Chem 2024; 63:11852-11859. [PMID: 38856980 DOI: 10.1021/acs.inorgchem.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The efficiency of electrochemical nitrate (NO3-) reduction to ammonia (NH3) still remains a challenge due to the sluggish kinetics of the complex eight-electron reduction process and competitive hydrogen evolution reaction (HER). Herein, we designed new three-dimensional (3D) porous Cu/Cu2+1O nanosheet arrays (Cu/Cu2+1O NSA) by coupling a template-directed method with in situ electroreduction. Thanks to the 3D porous structure and in-plane heterojunctions, Cu/Cu2+1O NSA can provide abundant active sites and a good interfacial effect, obtaining the maximum Faradaic efficiency (FE) of ammonia (88.09%) and high yield rate of 0.2634 mmol h-1 cm-2, which is higher than that of CuO nanosheets (77.81% and 0.2188 mmol h-1 cm-2) and CuO nanoparticles (34.60% and 0.0692 mmol h-1 cm-2). Experimental results and DFT simulations show that the interface effect of Cu/Cu2+1O can decrease the reaction energy barrier of the key step (*NO to *NOH) and can greatly inhibit the competitive hydrogen evolution reaction, thereby achieving excellent electrocatalytic performance for nitrate-to-ammonia conversion.
Collapse
Affiliation(s)
- Chaozhong Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingguan Xiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Liu
- Jiangsu Higher Vocational College Engineering Research Center of Green Energy and Low Carbon Materials, Zhenjiang College, Zhenjiang 212028, China
| | - Jie Hu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qing Zhao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhengliang Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Zhang W, Yao Y, Chen Z, Zhao S, Guo F, Zhang L. Fluorine Modification Promoted Water Dissociation into Atomic Hydrogen on a Copper Electrode for Efficient Neutral Nitrate Reduction and Ammonia Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7208-7216. [PMID: 38615328 DOI: 10.1021/acs.est.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (NITRR) offers an attractive solution for alleviating environmental concerns, yet in neutral media, it is challenging as a result of the reliance on the atomic hydrogen (H*) supply by breaking the stubborn HO-H bond (∼492 kJ/mol) of H2O. Herein, we demonstrate that fluorine modification on a Cu electrode (F-NFs/CF) favors the formation of an O-H···F hydrogen bond at the Cu-H2O interface, remarkably stretching the O-H bond of H2O from 0.98 to 1.01 Å and lowering the energy barrier of water dissociation into H* from 0.64 to 0.35 eV at neutral pH. As a benefit from these advantages, F-NFs/CF could rapidly reduce NO3- to NH3 with a rate constant of 0.055 min-1 and a NH3 selectivity of ∼100%, far higher than those (0.004 min-1 and 9.2%) of the Cu counterpart. More importantly, we constructed a flow-through coupled device consisting of a NITRR electrolyzer and a NH3 recovery unit, realizing 98.1% of total nitrogen removal with 99.3% of NH3 recovery and reducing the denitrification cost to $5.1/kg of N. This study offers an effective strategy to manipulate the generation of H* from water dissociation for efficient NO3--to-NH3 conversion and sheds light on the importance of surface modification on a Cu electrode toward electrochemical reactions.
Collapse
Affiliation(s)
- Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
11
|
Li J, Wang B, Wang H, Jia J, Zhang J, Zhang L, Tu M, Li H, Xu C. Ru-Doped Ultrasmall Cu Nanoparticles Decorated with Carbon for Electroreduction of Nitrate to Ammonia. Inorg Chem 2024; 63:3955-3961. [PMID: 38334267 DOI: 10.1021/acs.inorgchem.3c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Electrocatalytic nitrate reduction reaction offers a sustainable approach to treating wastewater and synthesizing high-value ammonia under ambient conditions. However, electrocatalysts with low faradaic efficiency and selectivity severely hinder the development of nitrate-to-ammonia conversion. Herein, Ru-doped ultrasmall copper nanoparticles loaded on a carbon substrate (Cu-Ru@C) were fabricated by the pyrolysis of Cu-BTC metal-organic frameworks (MOFs). The Cu-Ru@C-0.5 catalyst exhibits a high faradaic efficiency (FE) of 90.4% at -0.6 V (vs RHE) and an ammonia yield rate of 1700.36 μg h-1mgcat.-1 at -0.9 V (vs RHE). Moreover, the nitrate conversion rate is almost 100% over varied pHs (including acid, neutral, and alkaline electrolytes) and different nitrate concentrations. The remarkable performance is attributed to the synergistic effect between Cu and Ru and the excellent conductivity of the carbon substrate. This work will open an exciting avenue to exploring MOF derivatives for ambient ammonia synthesis via selective electrocatalytic nitrate reduction.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Binglei Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinhua Zhang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lanyue Zhang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mudong Tu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hua Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Zhang W, Qi Y, Zhao Y, Ge W, Dong L, Shen J, Jiang H, Li C. Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural. Sci Bull (Beijing) 2023; 68:2190-2199. [PMID: 37580202 DOI: 10.1016/j.scib.2023.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023]
Abstract
Electrocatalytic conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) presents a compelling strategy for the production of premium chemicals via the utilization of renewable energy sources. Exploring efficient catalytic systems to obtain highly selective BHMF has remained a giant challenge. A design strategy is proposed here to regulate active hydrogen (Hads) production in rhodium (Rh) nanoparticles grown on Cu nanowires (RhCu NWs) catalyst, which achieves a faradaic efficiency (FE) of 92.6% in the electrocatalytic reduction of HMF to BHMF at -20 mA cm-2 with no degradation in performance after 8 cycles. Kinetic investigations and electron spin resonance (ESR) spectroscopy reveal that the incorporation of Rh accelerates the water dissociation and facilitates the generation of Hads. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) further demonstrates that the Rh component boosts the proportion of ordered weakly hydrogen-bonded water molecules on the catalyst surface, which is much easier to dissociate. The construction of an interfacial Hads-rich environment promotes the HMF intermediates binding with Hads to BMHF, thereby suppressing the formation of undesired dimers. This work demonstrates the promise of altering the interfacial water environment as a strategy to boost the electrosynthetic properties of biomass-derived products toward value-added outcomes.
Collapse
Affiliation(s)
- Wenfei Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbin Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Zhao
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Dong
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongliang Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Yao K, Fang Z, Wang J, Wang W, Wang M, Yan W, Ye M, Jiang B, Wu K, Wei X. Regulating charge distribution of Cu 3PdN nanocrystals for nitrate electroreduction to ammonia. Chem Commun (Camb) 2023; 59:12176-12179. [PMID: 37750034 DOI: 10.1039/d3cc02791k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
As-synthesized Cu3PdN nanocrystals displayed high faradaic efficiency and selectivity for nitrate-to-ammonia conversion. The excellent performances can be attributed to the charge redistribution in Cu3PdN as a result of modulations of the electronic structures of Pd and Cu atoms, which altered the adsorption activation energy of the intermediates during the nitrate reduction reaction process.
Collapse
Affiliation(s)
- Kai Yao
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Zhaobin Fang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Jieyue Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Wenhai Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Mingyue Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Weijie Yan
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| | - Mingfu Ye
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
- Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui International Joint Research Center for Green Manufacturing and Biotechnology of Energy Materials, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Binbin Jiang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246001, China.
| | - Konglin Wu
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
- Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui International Joint Research Center for Green Manufacturing and Biotechnology of Energy Materials, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Xianwen Wei
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243032, China.
| |
Collapse
|
14
|
He X, Liu H, Qin J, Niu Z, Mu J, Liu B. Heterostructured Co/Co 3O 4 anchored on N-doped carbon nanotubes as a highly efficient electrocatalyst for nitrate reduction to ammonia. Dalton Trans 2023. [PMID: 37486287 DOI: 10.1039/d3dt01705b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The electrochemical reduction of nitrate (NO3-) to ammonia (NH3) has emerged as an attractive approach for selectively reducing NO3- to highly value-added NH3 and removing NO3- pollutants simultaneously. In this work, a heterostructured Co/Co3O4 electrocatalyst anchored on N-doped carbon nanotubes was prepared and applied for the NO3- reduction towards NH3 under alkaline conditions. The catalyst achieves outstanding performance with up to 67% NH3 faradaic efficiency at -1.2 V vs. Hg/HgO and 8.319 mg h-1 mgcat-1 yield at -1.7 V vs. Hg/HgO. In addition, it also exhibits good long-term stability. 15N isotopic labelling experiments prove that the yielded NH3 is derived from NO3- species. In situ electrochemical Raman spectra revealed that the structure of the as-prepared catalyst showed outstanding stability and identified possible intermediates during the electrocatalytic NO3- reduction reaction (NO3RR).
Collapse
Affiliation(s)
- Xianxian He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hongfei Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhaodong Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Jincheng Mu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Liu Z, Shen F, Shi L, Tong Q, Tang M, Li Y, Peng M, Jiao Z, Jiang Y, Ao L, Fu W, Lv X, Jiang G, Hou L. Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364020 DOI: 10.1021/acs.est.3c03431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Electrocatalytic reduction of nitrate to NH3 (NO3RR) on Cu offers sustainable NH3 production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH3 collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO2 support enables the formation of electron-deficient Cuδ+ species (0 < δ ≤ 2), which are more active than Cu0 in NO3RR. Furthermore, TiO2-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%, mass activity of 41.4 mg-N h gCu-1, specific activity of 377.8 mg-N h-1 m-2, and minimal Cu leaching (<25.4 μg L-1) when treating 22.5 mg L-1 of NO3--N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH3 collection system based on TiO2-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mgN m-2 h-1. We also demonstrated this system could collect 83.9% of nitrogen from NO3--N (19.3 mg L-1) in natural lake water.
Collapse
Affiliation(s)
- Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Mu'e Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhaojie Jiao
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China
| |
Collapse
|
16
|
Min X, Liu B. Microenvironment Engineering to Promote Selective Ammonia Electrosynthesis from Nitrate over a PdCu Hollow Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300794. [PMID: 37010036 DOI: 10.1002/smll.202300794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The electrosynthesis of recyclable ammonia (NH3 ) from nitrate under ambient conditions is of great importance but still full of challenges for practical application. Herein, an efficient catalyst design strategy is developed that can engineer the surface microenvironment of a PdCu hollow (PdCu-H) catalyst to confine the intermediates and thus promote selective NH3 electrosynthesis from nitrate. The hollow nanoparticles are synthesized by in situ reduction and nucleation of PdCu nanocrystals along a self-assembled micelle of a well-designed surfactant. The PdCu-H catalyst shows a structure-dependent selectivity toward the NH3 product during the nitrate reduction reaction (NO3 - RR) electrocatalysis, enabling a high NH3 Faradaic efficiency of 87.3% and a remarkable NH3 yield rate of 0.551 mmol h-1 mg-1 at -0.30 V (vs reversible hydrogen electrode). Moreover, this PdCu-H catalyst delivers high electrochemical performance in the rechargeable zinc-NO3 - battery. These results provide a promising design strategy to tune catalytic selectivity for efficient electrosynthesis of renewable NH3 and feedstocks.
Collapse
Affiliation(s)
- Xiaowen Min
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Zhang ZN, Hong QL, Wang XH, Huang H, Li SN, Chen Y. Au Nanowires Decorated Ultrathin Co 3 O 4 Nanosheets toward Light-Enhanced Nitrate Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300530. [PMID: 36971299 DOI: 10.1002/smll.202300530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.
Collapse
Affiliation(s)
- Ze-Nong Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing-Ling Hong
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xiao-Hui Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|