1
|
Zhang H, Sun Y, Wang S, Wang Q, Shang Y, Lee S, Zhang L, Deng L, Yang Y. Synergistic RuCo atomic pair with enhanced activity toward levulinic acid hydrogenation. J Colloid Interface Sci 2025; 681:281-291. [PMID: 39608029 DOI: 10.1016/j.jcis.2024.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Development of efficient metal-based catalysts is of great importance for levulinic acid (LA) hydrogenation to γ-valerolactone (GVL). The widely employed Ru-based catalysts are advantageous for H2 dissociation, however, the steric hindrance of large Ru particles hampers their coordination to CO moiety in LA, and thereby decreasing the activity. Herein, we report a Ru1Co1NC double single-atom catalyst (DSAC) with synergistic Ru and Co atomic pairs for LA hydrogenation into GVL. The Ru and Co doped zeolitic imidazole frameworks (RuCo-doped ZIF-8) precursor was rationally designed ((Ru + Co)/(Zn + Ru + Co) = 2 at.%), where the Zn node spatially isolates Ru and Co species, expanding the adjacent RuCo distance and facilitating the formation of the RuCo atomic pair upon pyrolysis, with each atom coordinated with three nitrogen atoms (N3Ru1Co1N3). The Ru1Co1NC catalyst exhibits outstanding catalytic activity, with a turnover frequency (TOF) of 1980 h-1, surpassing previously reported Ru-based catalysts. Experimental investigation and density functional theory (DFT) calculations reveal that the electron-rich Ru induced by less electronegative Co facilitates H2 dissociation, while atomic Ru in dual-atomic pairs promotes CO activation, Ru and Co atomic pairs synergistically enhancing LA conversion to GVL. This research will shed light on the precise control of active sites at atomic scale, and also provides a new concept for designing high-performance Ru-based catalysts towards LA hydrogenation to GVL.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yuhang Sun
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Shuo Wang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qiyuan Wang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yuxiang Shang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lei Deng
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ying Yang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
2
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Liu M, Ke S, Sun C, Zhang C, Liao S. Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O 2 Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2003. [PMID: 39728540 DOI: 10.3390/nano14242003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O2) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O2 batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst. When applied in the cathode of PEMFCs, the current density can reach up 1.1 and 1.7 A cm-2 at 0.7 and 0.6 V, respectively, with a maximum power density of 1.15 W cm-2. The discharge capacity of the Li-O2 batteries is up to 15,081 mAh g-1 with Fe-Hf/N/C in the cathode, which also shows a lower charge overpotential, 200 mV lower than that of the Fe/N/C. Additionally, the Fe-Hf/N/C catalyst has demonstrated better stability in both PEMFCs and Li-O2 batteries. This reveals that Hf can not only optimize the electronic structure of iron sites and increase the active sites for the oxygen reduction reaction, but can also anchor the active sites, enhancing the durability of the catalyst. This study provides a new strategy for the development of high-performance and durable catalysts for PEMFCs and Li-O2 batteries.
Collapse
Affiliation(s)
- Mingrui Liu
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| | - Shaoqiu Ke
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, Huangshi 435002, China
| | - Chuangqing Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chenzhuo Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Li Z. Designing Robust Single Atom Catalysts by Three-in-One Strategy: Sub-1-nm Space Confining, Bimetallic Bonding and Reaction-Induced Forming Active Sites. SMALL METHODS 2024; 8:e2400478. [PMID: 39436087 DOI: 10.1002/smtd.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/27/2024] [Indexed: 10/23/2024]
Abstract
It is imperative to design robust single atom catalysts (SACs) that maintain the stability of the active component under diverse reaction conditions and prevent aggregation or deactivation. Confining the single atom active site within sub-nanometer (sub-1-nm) spaces has proven effective in enhancing the stability and activity of the catalyst, owing to the strong constraints and regulations imposed on atomic behavior at this scale. Bimetallic bond atomic sites, comprising two distinct metal compositions, often exhibit unique electronic structures and catalytic properties. Designing SACs under reaction-induced conditions, such as varying temperatures, pressures, and atmospheres, can facilitate a deeper understanding of the formation and migration behavior of active sites in real reactions, as well as the optimization mechanisms for performance enhancement. The objective of this review is to promote a robust SAC design strategy that encapsulates bimetallic bonding active sites within sub-1-nm spaces and investigates catalyst preparation and performance under reaction-induced conditions. This design strategy is anticipated to bolster the catalytic activity and stability of the catalyst while also offering fresh perspectives and optimization avenues for the catalytic processes involved in practical chemical reactions.
Collapse
Affiliation(s)
- Zesheng Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
5
|
Liu Y, Qing Y, Jiang W, Zhou L, Chen C, Shen L, Li B, Zhou M, Lin H. Strategies for Achieving Carbon Neutrality: Dual-Atom Catalysts in Focus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407313. [PMID: 39558720 DOI: 10.1002/smll.202407313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Carbon neutrality is a fundamental strategy for achieving the sustainable development of human society. Catalyzing CO2 reduction into various high-value-added fuels serves as an effective pathway to achieve this strategic objective. Atom-dispersed catalysts have received extensive attention due to their maximum atomic utilization, high catalytic selectivity, and exceptional catalytic performance. Dual-atom catalysts (DACs), as an extension of single-atom catalysts (SACs), not only retain the advantages of SACs, but also produce many new properties. This review initiates its exploration by elucidating the mechanism of CO2 reduction reaction (CO2RR) from CO2 adsorption and CO2 activation. Then, a comprehensive summary of recently developed preparation methods of DACs is presented. Importantly, the mechanisms underlying the promoted catalytic performance of DACs in comparison to SACs are subjected to a comprehensive analysis from adjustable adsorption capacity, tunable electronic structure, strong synergistic effect, and enhanced spacing effect, elucidating their respective superiorities in CO2RR. Subsequently, the application of DACs in CO2RR is discussed in detail. Conclusively, the prospective trajectories and inherent challenges of CO2RR are expounded upon concerning the continued advancement of DACs. This thorough review not only enhances the comprehension of DACs within CO2RR but also accentuates the prospective developments in the design of sophisticated catalytic materials.
Collapse
Affiliation(s)
- Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenhai Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
6
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
7
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2024:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Wang H, Hu R, Zhu R, Xue L, Yang S, Nie Y, Yu J, Jiang X. Main-Group Elements Enhance Electrochemical Nitrogen Reduction Reaction of Vanadium-Based Single Atom Catalysts Through d-p Orbital Hybridization. CHEMSUSCHEM 2024:e202400808. [PMID: 39163552 DOI: 10.1002/cssc.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Developing active sites with flexibility and diversity is crucial for single atom catalysts (SACs) towards sustainable nitrogen fixation at ambient conditions. Herein, the effects of doping main group metal elements (MGM) on the stability, catalytic activity, and selectivity of vanadium-based SACs is systematically investigated based on density functional theory calculations. It is found that the catalytic activity of V site can be significantly enhanced by the synergistic effect between MGM and vanadium atoms. More importantly, a volcano curve between the catalytic activity and the adsorption free energy of NNH* can be established, in which V-Pb dimer embedded on N-coordinated graphene (VPb-NG) exhibits optimal NRR activity due to its location at the top of volcano. Further analysis of electronic structures reveals that the unoccupancy ratio (eg/t2g) of V site is dramatically increased by the strong d-p orbital hybridization between V and Pb atoms, subsequently, N2 is activated to a larger extent. These interesting findings may provide a new path for designing active sites in SACs with excellent performance.
Collapse
Affiliation(s)
- Haoyu Wang
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Riming Hu
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Ruochen Zhu
- School of Chemistry and Chemical Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Liang Xue
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Shuaijun Yang
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Yong Nie
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Jiayuan Yu
- School of Chemistry and Chemical Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Xuchuan Jiang
- School of Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
10
|
Chen JN, Pan ZH, Sun FL, Wu PX, Zheng ST, Zhuang GL, Long LS, Zheng LS, Kong XJ. Tuning Electrocatalytic Water Oxidation Activity: Insights from the Active-Site Distance in LnCu 6 Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401044. [PMID: 38516941 DOI: 10.1002/smll.202401044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.
Collapse
Affiliation(s)
- Jia-Nan Chen
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong-Hua Pan
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fu-Li Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanghai Collaborative Innovation Centre of Rare-earth Functional Materials, Longyan, 366300, China
| |
Collapse
|
11
|
Yang Y, Li B, Liang Y, Ni W, Li X, Shen G, Xu L, Chen Z, Zhu C, Liang J, Zhang S. Hetero-Diatomic CoN 4-NiN 4 Site Pairs with Long-Range Coupling as Efficient Bifunctional Catalyst for Rechargeable Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310231. [PMID: 38554395 PMCID: PMC11165470 DOI: 10.1002/advs.202310231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Indexed: 04/01/2024]
Abstract
In this study, Co/Ni-NC catalyst with hetero-diatomic Co/Ni active sites dispersed on nitrogen-doped carbon matrix is synthesized via the controlled pyrolysis of ZIF-8 containing Co2+ and Ni2+ compounds. Experimental characterizations and theoretical calculations reveal that Co and Ni are atomically and uniformly dispersed in pairs of CoN4-NiN4 with an intersite distance ≈0.41 nm, and there is long-range d-d coupling between Co and Ni with more electron delocalization for higher bifunctional activity. Besides, the in situ grown carbon nanotubes at the edges of the catalyst particles allow high electronic conductivity for electrocatalysis process. Electrochemical evaluations demonstrate the superior ORR and OER bifunctionality of Co/Ni-NC catalyst with a narrow potential gap of only 0.691 V and long-term durability, significantly prevailing over the single-atom Co-NC and Ni-NC catalysts and the benchmark Pt/C and RuO2 catalysts. Co/Ni-NC catalyzed Zn-air batteries achieve a high specific capacity of 771 mAh g-1 and a long continuous operation period up to 340 h with a small voltage gap of ≈0.65 V, also much superior to Pt/C-RuO2.
Collapse
Affiliation(s)
- Yue Yang
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Bin Li
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Yining Liang
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Wenpeng Ni
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangsha410004China
| | - Xuan Li
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Gengzhe Shen
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Lin Xu
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Chun Zhu
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Shiguo Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangsha410004China
| |
Collapse
|
12
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Yu MY, Yao YF, Fang K, Chen LS, Si LP, Liu HY. 2D Metal Porphyrin-Based MOFs and ZIF-8 Composite-Derived Carbon Materials Containing M-N x Active Sites as Bifunctional Electrocatalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16132-16144. [PMID: 38511296 DOI: 10.1021/acsami.3c18384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The main impediment to the development of zinc-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Transition metal N-doped carbon catalysts offer a promising alternative to noble metal catalysts, with metal-organic framework (MOF)-derived carbon material catalysts being particularly noteworthy. Here, we synthesized MxP-Z-C carbon catalysts by combining two-dimensional (2D) metal porphyrin-based MOFs (MxPMFs, x = Fe, Co, Ni, Mn) and three-dimensional zeolitic imidazole framework-8 (ZIF-8) through electrostatic interaction, followed by carbonization. ZIF-8 was inserted between the layers of MxPMFs to prevent its Π-Π stacking, allowing the active sites to become fully exposed. MxP-Z-C demonstrated an impressive catalytic activity for both the ORR and the OER reactions. Among them, FeP-Z-C showed the best catalytic activity. The half-wave potential for ORR was 0.92 V (vs the reversible hydrogen electrode (RHE)), while the overpotential for the OER was 290 mV. In addition, the zinc-air battery assembled by FeP-Z-C exhibited high power density (133.14 mW cm-2) and significant specific capacity (816 mAh gZn-1), indicating considerable potential as a bifunctional catalyst for electronic devices.
Collapse
Affiliation(s)
- Min-Yi Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Yan-Fang Yao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Li-Shui Chen
- Guangzhou Double One Latex Products Co., Ltd., Guangzhou 510830, China
| | - Li-Ping Si
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
16
|
Zhang H, Wang P, Zhang J, Sun Q, He Q, He X, Chen H, Ji H. Boosting the Catalase-Like Activity of SAzymes via Facile Tuning of the Distances between Neighboring Atoms in Single-Iron Sites. Angew Chem Int Ed Engl 2024; 63:e202316779. [PMID: 38100508 DOI: 10.1002/anie.202316779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
A nanozyme with neighboring single-iron sites (Fe2 -SAzyme) was introduced as a bioinspired catalase mimic, featuring excellent activity under varied conditions, twice as high as that of random Fe1 -SAzyme and ultrahigh H2 O2 affinity as that of bioenzymes. Surprisingly, the interatomic spacing tuning between adjacent iron sites also suppressed the competitive peroxidase pathway, remarkably increasing the catalase/peroxidase selectivity up to ~6 times compared to Fe1 -SAzyme. This dramatically switched the catalytic activity of Fe-SAzymes from generating (i.e. Fe1 -SAzymes, preferably mimicking peroxidase) to scavenging ROS (i.e. Fe2 -SAzymes, dominantly mimicking catalase). Theoretical and experimental investigations suggested that the pairwise single-iron sites may serve as a robust molecular tweezer to efficiently trap and decompose H2 O2 into O2 , via cooperative hydrogen-bonding induced end-bridge adsorption. The versatile mechano-assisted in situ MOF capsulation strategy enabled facile access to neighboring M2 -SAzyme (M=Fe, Ir, Pt), even up to a 1000 grams scale, but with no obvious scale-up effect for both structures and performances.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pengbo Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jingru Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Qingdi Sun
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qian He
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hongyu Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
17
|
Wang Z, Peng L, Zhu P, Wang W, Yang C, Hu HY, Wu Q. Electron Redistribution in Iridium-Iron Dual-Metal-Atom Active Sites Enables Synergistic Enhancement for H 2O 2 Decomposition. ACS NANO 2024; 18:2885-2897. [PMID: 38236146 DOI: 10.1021/acsnano.3c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.
Collapse
Affiliation(s)
- Zhiwei Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ping Zhu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Wenlong Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Cheng Yang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hong-Ying Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qianyuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
18
|
Zhao Z, Xiong Y, Yu S, Fang T, Yi K, Yang B, Zhang Y, Yang X, Liu X, Jia X. Single-atom Zn with nitrogen defects on biomimetic 3D carbon nanotubes for bifunctional oxygen electrocatalysis. J Colloid Interface Sci 2023; 650:934-942. [PMID: 37453317 DOI: 10.1016/j.jcis.2023.06.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Single atoms catalysts (SACs) have promising development in electrocatalytic energy conversion. Nevertheless, rational design SACs with reversible oxygen electrocatalysis still remain challenge. Herein, we synthesized atomically dispersed Zn with N defect on three-dimensional (3D) biomimetic carbon nanotubes by secondary pyrolysis (Zn-N-C-2), which possesses excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalytic activities. The biomimetic 3D structure and unique "leaf-branch" system are beneficial to fully expose the active sites. Density functional theory (DFT) calculations show that Zn-N3-D can optimize the charge distribution and facilitate electron transfer step of OH*→O*. Zn-N-C-2 exhibits higher ORR activity than commercial Pt/C with a half-wave potential (E1/2) of 0.85 V and OER overpotential of 450 mV at 10 mA cm-2. After being assembled into the air cathode of aqueous Zn-air battery (ZAB), it demonstrates superior performances with long-term charge and discharge for more than 200 h. This work not only clarifies the controlled synthesis of N-defects Zn SACs with excellent bifunctional electrocatalyst, but also provide in-depth understanding of structural-performance relationships by regulating local microenvironments.
Collapse
Affiliation(s)
- Zeyu Zhao
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Youpeng Xiong
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Shui Yu
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Bin Yang
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Yanwen Zhang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, PR China
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, PR China
| | - Xinghuan Liu
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
19
|
Sun Y, Shi W, Fu YQ, Yu H, Wang Z, Li Z. The novel π-d conjugated TM 2B 3N 3S 6 (TM = Mo, Ti and W) monolayers as highly active single-atom catalysts for electrocatalytic synthesis of ammonia. J Colloid Interface Sci 2023; 650:1-12. [PMID: 37392494 DOI: 10.1016/j.jcis.2023.06.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Recently, single-atom catalysts (SACs) are receiving significant attention in electrocatalysis fields due to their excellent specific activities and extremely high atomic utilization ratio. Effective loading of metal atoms and high stability of SACs increase the number of exposed active sites, thus significantly improving their catalytic efficiency. Herein, we proposed a series (29 in total) of two-dimensional (2D) conjugated structures of TM2B3N3S6 (TM means those 3d to 5d transition metals) and studied the performance as single-atom catalysts for nitrogen reduction reaction (NRR) using density functional theory (DFT). Results show that TM2B3N3S6 (TM = Mo, Ti and W) monolayers have superior performance for ammonia synthesis with low limiting potentials of -0.38, -0.53 and -0.68 V, respectively. Among them, the Mo2B3N3S6 monolayer shows the best catalytic performance of NRR. Meanwhile, the π conjugated B3N3S6 rings undergo coordinated electron transfer with the d orbitals of TM to exhibit good chargeability, and these TM2B3N3S6 monolayers activate isolated N2 according to the "acceptance-donation" mechanism. We have also verified the good stability (i.e., Ef < 0, and Udiss > 0) and high selectivity (Ud = -0.03, 0.01 and 0.10 V, respectively) of the above four types of monolayers for NRR over hydrogen evolution reaction (HER). The NRR activities have been clarified by multiple-level descriptors (ΔG*N2H, ICOHP, and Ɛd) in the terms of basic characteristics, electronic property, and energy. Moreover, the aqueous solution can promote the NRR process, leading to the reduction of ΔGPDS from 0.38 eV to 0.27 eV for the Mo2B3N3S6 monolayer. However, the TM2B3N3S6 (TM = Mo, Ti and W) also showed excellent stability in aqueous phase. This study proves that the π-d conjugated monolayers of TM2B3N3S6 (TM = Mo, Ti and W) as electrocatalysts show great potentials for the nitrogen reduction.
Collapse
Affiliation(s)
- Yongxiu Sun
- University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wenwu Shi
- University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Haijian Yu
- Department of Mechanical Engineer, Weihai Secondary Vocational School, Weihai 264213, PR China
| | - Zhiguo Wang
- University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Zhijie Li
- University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
20
|
Wu J, Wu D, Li H, Song Y, Lv W, Yu X, Ma D. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study. NANOSCALE 2023; 15:16056-16067. [PMID: 37728053 DOI: 10.1039/d3nr03310d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Tailoring the coordination environment is an effective strategy to modulate the electronic structure and catalytic activity of atomically dispersed transition-metal (TM) catalysts, which has been widely investigated for single-atom catalysts but received less attention for emerging double-atom catalysts (DACs). Herein, based on first-principles calculations, taking the commonly studied N-coordinated graphene-based DACs as references, we explored the effect of coordination engineering on the catalytic behaviors of DACs towards the electrocatalytic nitrogen reduction reaction (NRR), which is realized through replacing one N atom by the B or O atom to form B, N or O, N co-coordinated DACs. We found that B, N or O, N co-coordination could significantly strengthen N2 adsorption and alter the N2 adsorption pattern of the TM dimer active center, which greatly facilitates N2 activation. Moreover, on the studied DACs, the linear scaling relationship between the binding strengths of key intermediates can be attenuated. Consequently, the O, N co-coordinated Mn2 DACs, exhibiting an ultralow limiting potential of -0.27 V, climb to the peak of the activity volcano. In addition, the experimental feasibility of this DAC system was also identified. Overall, benefiting from the coordination engineering effect, the chemical activity and catalytic performance of the DACs for NRR can be significantly boosted. This phenomena can be understood from the adjusted electronic structure of the TM dimer active center due to the changes of its coordination microenvironment, which significantly affects the binding strength (pattern) of key intermediates and changes the reaction pathways, leading to enhanced NRR activity and selectivity. This work highlights the importance of coordination engineering in developing DACs for the electrocatalytic NRR and other important reactions.
Collapse
Affiliation(s)
- Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yanhao Song
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Chen C, Li Y, Huang A, Liu X, Li J, Zhang Y, Chen Z, Zhuang Z, Wu Y, Cheong WC, Tan X, Sun K, Xu Z, Liu D, Wang Z, Zhou K, Chen C. Engineering Molecular Heterostructured Catalyst for Oxygen Reduction Reaction. J Am Chem Soc 2023; 145:21273-21283. [PMID: 37729633 DOI: 10.1021/jacs.3c05371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Introducing a second metal species into atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts to construct diatomic sites (DASs) is an effective strategy to elevate their activities and stabilities. However, the common pyrolysis-based method usually leads to substantial uncertainty for the formation of DASs, and the precise identification of the resulting DASs is also rather difficult. In this regard, we developed a two-step specific-adsorption strategy (pyrolysis-free) and constructed a DAS catalyst featuring FeCo "molecular heterostructures" (FeCo-MHs). In order to rule out the possibility of the two apparently neighboring (in the electron microscopy image) Fe/Co atoms being dispersed respectively on the top/bottom surfaces of the carbon support and thus forming "false" MHs, we conducted in situ rotation (by 8°, far above the critical angle of 5.3°) and directly identified the individual FeCo-MHs. The formation of FeCo-MHs could modulate the magnetic moments of the metal centers and increase the ratio of low-spin Fe(II)-N4 moiety; thus the intrinsic activity could be optimized at the apex of the volcano-plot (a relationship as a function of magnetic moments of metal-phthalocyanine complexes and catalytic activities). The FeCo-MHs catalyst displays an exceptional ORR activity (E1/2 = 0.95 V) and could be used to construct high-performance cathodes for hydroxide exchange membrane fuel cells and zinc-air batteries.
Collapse
Affiliation(s)
- Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xuerui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiazhan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Chen
- Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing Institute of Aerospace Testing Technology, Beijing 100048, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yue Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weng-Chon Cheong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kaian Sun
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Di Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiguo Wang
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kebin Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
23
|
Li Z, Li B, Yu C. Atomic Aerogel Materials (or Single-Atom Aerogels): An Interesting New Paradigm in Materials Science and Catalysis Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211221. [PMID: 36606466 DOI: 10.1002/adma.202211221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Indexed: 06/16/2023]
Abstract
The concept of "single-atom catalysis" is first proposed by Tao Zhang, Jun Li, and Jingyue Liu in 2011. Single-atom catalysts (SACs) have a very high catalytic activity and greatly improved atom utilization ratio. At present, SACs have become frontier materials in the field of catalysis. Aerogels are highly porous materials with extremely low density and extremely high porosity. These pores play a key role in determining their surface reactivity and mechanical stability. The alliance of SACs and aerogels can fully reflect their structural advantages and lead to new enhancement effects. Herein, a general concept of "atomic aerogel materials" (AAMs) (or single-atom aerogels (SAAs)) is proposed to describe this interesting new paradigm in both material and catalysis fields. Based on the basic units of "gel," the AAMs can be divided into two categories: carrier-level AAMs (with micro-, nano-, or sub-nanometer pore structures) and atomic-level AAMs (with atomic-defective or oxygen-bridged sub-nanopore structures). The basic unit of the former (i.e., single-atom-functionalized aerogels) is the carrier materials in nanostructures, and the latter (i.e., single-atom-built aerogels) is the single metal atoms in atomic structures. The atomic-defective or oxygen-bridged AAMs will be important development directions in versatile heterogeneous catalytic or noncatalytic fields. The design proposals, latent challenges, and coping strategies of this new "atomic nanosystem" in applications are pointed out as well.
Collapse
Affiliation(s)
- Zesheng Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Bolin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Changlin Yu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
24
|
Li Z, Li B, Li Q. Single-Atom Nano-Islands (SANIs): A Robust Atomic-Nano System for Versatile Heterogeneous Catalysis Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211103. [PMID: 36967534 DOI: 10.1002/adma.202211103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Indexed: 05/19/2023]
Abstract
Academician Tao Zhang from China and co-workers designed the first Pt1 /FeOx single-atom catalysts (SACs) in 2011, and they proposed the concept of "single-atom catalysis" in the field of heterogeneous catalysis. Generally, it is easy for active metal single-atom sites on a carrier to migrate and aggregate, which results in poor performance; or the chemical bond between the metal atom and carrier is too strong (immovable), which results in passivation of the active site. Recently, "nano-island" type SACs were designed, in which the active metal atoms are isolated on the "islands", and can move within the respective "island", but the migration across the "island" is blocked, to achieve a dynamic confinement design of single atoms (that is, a "moving but not aggregating" design philosophy). Herein, a new concept of "single-atom nano-islands (SANIs)" is proposed to describe these congeneric "atomic-nano" systems in heterogeneous catalysis fields. Particularly, the SANIs are divided into three categories: "one-island-one-atom", "one-island-multi-atoms", and "island-sea synergism" architectures. The scientific significance and application principles of SANIs in versatile heterogeneous catalysis fields (i.e., thermocatalysis, electrocatalysis, and photocatalysis) are summarized. The challenges and proposals of SANIs are also provided.
Collapse
Affiliation(s)
- Zesheng Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Bolin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
25
|
Zhang J, Li L, Du M, Cui Y, Li Y, Yan W, Huang H, Li X, Zhu X. Single-Atom Phosphorus Defects Decorated CoP Cocatalyst Boosts Photocatalytic Hydrogen Generation Performance of Cd 0.5 Zn 0.5 S by Directed Separating the Photogenerated Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300402. [PMID: 36808810 DOI: 10.1002/smll.202300402] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Indexed: 05/18/2023]
Abstract
Design and preparation of an efficient and nonprecious cocatalysts, with structural features and functionality necessary for improving photocatalytic performance of semiconductors, remain a formidable challenge until now. Herein, for the first time, a novel CoP cocatalyst with single-atom phosphorus vacancies defects (CoP-Vp ) is synthesized and coupled with Cd0.5 Zn0.5 S to build CoP-Vp @Cd0.5 Zn0.5 S (CoP-Vp @CZS) heterojunctions photocatalysts via a liquid phase corrosion method following by an in suit growth process. The nanohybrids deliver an attractive photocatalytic hydrogen production activity of 2.05 mmol h-1 30 mg-1 under visible-light irradiation, which is 14.66 times higher than that of the pristine ZCS samples. As expected, CoP-Vp further enhances the charge-separation efficiency of ZCS, in addition to the improvement of the electron transfer efficiency, which is confirmed by the ultrafast spectroscopies. Mechanism studies based on density functional theory calculations verify that Co atoms adjacent with single-atom Vp play the key role in translation, rotation, and transformation of electrons for H2 O reduction. This scalable strategy focusing defect engineering provides a new insight into designing the highly active cocatalysts to boost the photocatalytic application.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Lutao Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Ming Du
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, 210003, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Wei Yan
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
26
|
Mao X, Guo R, Chen Q, Zhu H, Li H, Yan Z, Guo Z, Wu T. Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO 2 Reduction Reactions. Molecules 2023; 28:molecules28083292. [PMID: 37110526 PMCID: PMC10146859 DOI: 10.3390/molecules28083292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ruitang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Quhan Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongzhe Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zijun Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zeyu Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
27
|
Tan XQ, Mo W, Lin X, Loh JY, Mohamed AR, Ong WJ. Retrospective insights into recent MXene-based catalysts for CO 2 electro/photoreduction: how far have we gone? NANOSCALE 2023; 15:6536-6562. [PMID: 36942445 DOI: 10.1039/d2nr05718b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electro/photocatalytic CO2 reduction reaction (CO2RR) is a long-term avenue toward synthesizing renewable fuels and value-added chemicals, as well as addressing the global energy crisis and environmental challenges. As a result, current research studies have focused on investigating new materials and implementing numerous fabrication approaches to increase the catalytic performances of electro/photocatalysts toward the CO2RR. MXenes, also known as 2D transition metal carbides, nitrides, and carbonitrides, are intriguing materials with outstanding traits. Since their discovery in 2011, there has been a flurry of interest in MXenes in electrocatalysis and photocatalysis, owing to their several benefits, including high mechanical strength, tunable structure, surface functionality, high specific surface area, and remarkable electrical conductivity. Herein, this review serves as a milestone for the most recent development of MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR. The overall structure of MXenes is described, followed by a summary of several synthesis pathways classified as top-down and bottom-up approaches, including HF-etching, in situ HF-formation, electrochemical etching, and halogen etching. Additionally, the state-of-the-art development in the field of both the electrocatalytic and photocatalytic CO2RR is systematically reviewed. Surface termination modulation and heterostructure engineering of MXene-based electro/photocatalysts, and insights into the reaction mechanism for the comprehension of the structure-performance relationship from the CO2RR via density functional theory (DFT) have been underlined toward activity enhancement. Finally, imperative issues together with future perspectives associated with MXene-based electro/photocatalysts are proposed.
Collapse
Affiliation(s)
- Xin-Quan Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wuwei Mo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Xinlong Lin
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Jian Yiing Loh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Pulau Pinang, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363216, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
28
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
29
|
Liu X, Zhao F, Jiao L, Fang T, Zhao Z, Xiao X, Li D, Yi K, Wang R, Jia X. Atomically Dispersed Fe/N 4 and Ni/N 4 Sites on Separate-Sides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300289. [PMID: 36929092 DOI: 10.1002/smll.202300289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Dual single atoms catalysts have promising application in bifunctional electrocatalysis due to their synergistic effect. However, how to balance the competition between rate-limiting steps (RDSs) of reversible oxygen reduction and oxygen evolution reaction (OER) and fully expose the active centers by reasonable structure design remain enormous challenges. Herein, Fe/N4 and Ni/N4 sites separated on different sides of the carbon nanosheets with Janus structure (FeNijns /NC) is synthesized by layer-by-layer assembly method. Experiments and calculations reveal that the side of Fe/N4 is beneficial to oxygen reduction reaction (ORR) and the Ni/N4 side is preferred to OER. Such Janus structure can take full advantage of two separate-sides of carbon nanosheets and balance the competition of RDSs during ORR and OER. FeNijns /NC possesses superior ORR and OER activity with ORR half-wave potential of 0.92 V and OER overpotential of 440 mV at J = 10 mA cm-2 . Benefiting from the excellent bifunctional activities, FeNijns /NC assembled aqueous Zn-air battery (ZAB) demonstrates better maximum power density, and long-term stability (140 h) than Pt/C+RuO2 catalyst. It also reveals superior flexibility and stability in solid-state ZAB. This work brings a novel perspective for rational design and understanding of the catalytic mechanisms of dual single atom catalysts.
Collapse
Affiliation(s)
- Xinghuan Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271000, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianwen Fang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Zeyu Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xiangfei Xiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Danya Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Ke Yi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Rongjie Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xin Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| |
Collapse
|
30
|
Li Z, Li B, Yu C, Wang H, Li Q. Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206605. [PMID: 36587986 PMCID: PMC9982577 DOI: 10.1002/advs.202206605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Indexed: 05/23/2023]
Abstract
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Collapse
Affiliation(s)
- Zesheng Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Bolin Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Changlin Yu
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| |
Collapse
|
31
|
Qu G, Wei K, Pan K, Qin J, Lv J, Li J, Ning P. Emerging materials for electrochemical CO 2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. NANOSCALE 2023; 15:3666-3692. [PMID: 36734996 DOI: 10.1039/d2nr06190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical CO2 reduction reaction can effectively convert CO2 into promising fuels and chemicals, which is helpful in establishing a low-carbon emission economy. Compared with other types of electrocatalysts, single-atom catalysts (SACs) immobilized on carbon substrates are considered to be promising candidate catalysts. Atomically dispersed SACs exhibit excellent catalytic performance in CO2RR due to their maximum atomic utilization, unique electronic structure, and coordination environment. In this paper, we first briefly introduce the synthetic strategies and characterization techniques of SACs. Then, we focus on the optimization strategies of the atomic structure of carbon-based SACs, including adjusting the coordination atoms and coordination numbers, constructing the axial chemical environment, and regulating the carbon substrate, focusing on exploring the structure-performance relationship of SACs in the CO2RR process. In addition, this paper also briefly introduces the diatomic catalysts (DACs) as an extension of SACs. At the end of the paper, we summarize the article with an exciting outlook discussing the current challenges and prospects for research on the application of SACs in CO2RR.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Jin Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Jiaxin Lv
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| |
Collapse
|