1
|
Ji F, Jiang F, Luo H, He WW, Han X, Shen W, Liu M, Zhou T, Xu J, Wang Z, Lan YQ. Hybrid Membrane of Sulfonated Poly(aryl ether ketone sulfone) Modified by Molybdenum Clusters with Enhanced Proton Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312209. [PMID: 38530091 DOI: 10.1002/smll.202312209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Developing novel proton exchange membranes (PEMs) with low cost and superior performance to replace Nafion is of great significance. Polyoxometalate-doped sulfonated poly(aryl ether ketone sulfone) (SPAEKS) allows for the amalgamation of the advantages in each constituent, thereby achieving an optimized performance for the hybrid PEMs. Herein, the hybrid membranes by introducing 2MeIm-{Mo132} into SPAEKS are obtained. Excellent hydrophilic properties of 2MeIm-{Mo132} can help more water molecules be retained in the hybrid membrane, providing abundant carriers for proton transport and proton hopping sites to build successive hydrophilic channels, thus lowering the energy barrier, accelerating the proton migration, and significantly fostering the proton conductivity of hybrid membranes. Especially, SP-2MIMo132-5 exhibits an enhanced proton conductivity of 75 mS cm-1 at 80 °C, which is 82.9% higher than pristine SPAEKS membrane. Additionally, this membrane is suitable for application in proton exchange membrane fuel cells, and a maximum power density of 266.2 mW cm-2 can be achieved at 80 °C, which far exceeds that of pristine SPAEKS membrane (54.6 mW cm-2). This work demonstrates that polyoxometalate-based clusters can serve as excellent proton conduction sites, opening up the choice of proton conduction carriers in hybrid membrane design and providing a novel idea to manufacture high-performance PEMs.
Collapse
Affiliation(s)
- Fang Ji
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Fengyu Jiang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Hongwei Luo
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wen-Wen He
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xu Han
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wangwang Shen
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Menglong Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Tao Zhou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Jingmei Xu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Zhe Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Zhou Y, Wang B, Ling Z, Liu Q, Fu X, Zhang Y, Zhang R, Hu S, Zhao F, Li X, Bao X, Yang J. Advances in ionogels for proton-exchange membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171099. [PMID: 38387588 DOI: 10.1016/j.scitotenv.2024.171099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.
Collapse
Affiliation(s)
- Yilin Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiwei Ling
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yanhua Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Feng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xiao Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xujin Bao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Materials, Loughborough University, Leicestershire LE11 3NW, UK.
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd, Zhuzhou, Hunan 412007, China.
| |
Collapse
|