1
|
Guo J, Zhang X, Dong F, Wang S, Wang D, Li Y, Zuo S, Wang Q, Li W, Sun J, He Z, Zhang T, Jiang Q, Sun B. Revealing the impact of modified modules flexibility on gemcitabine prodrug nanoassemblies for effective cancer therapy. J Colloid Interface Sci 2025; 677:941-952. [PMID: 39128288 DOI: 10.1016/j.jcis.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fudan Dong
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Simeng Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024:e2400563. [PMID: 39319499 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Rapp TL, Kopyeva I, Adhikari A, DeForest CA. Bioluminescence Resonance Energy Transfer (BRET)-Mediated Protein Release from Self-Illuminating Photoresponsive Biomaterials. J Am Chem Soc 2024; 146:25397-25402. [PMID: 39250821 DOI: 10.1021/jacs.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phototriggered release of various cargos, including soluble protein factors and small molecules, has the potential to correct aberrant biological events by offering spatiotemporal control over local therapeutic levels. However, the poor penetration depth of light historically limits implementation to subdermal regions, necessitating alternative methods of light delivery to achieve the full potential of photodynamic therapeutic release. Here, we introduce a strategy exploiting bioluminescence resonance energy transfer (BRET)-an energy transfer process between light-emitting Nanoluciferase (NLuc) and a photosensitive acceptor molecule-to drive biomolecule release from hydrogel biomaterials. Through a facile, one-pot, and high-yielding synthesis (60-70%), we synthesized a heterobifunctional ruthenium cross-linker bearing an aldehyde and an azide (CHO-Ru-N3), a compound that we demonstrate undergoes predictable exchange of the azide-bearing ligand under blue-green light irradiation (>550 nm). Following site-specific conjugation to NLuc via sortase-tag enhanced protein ligation (STEPL), the modified protein was covalently attached to a poly(ethylene glycol) (PEG)-based hydrogel via strain-promoted azide-alkyne cycloaddition (SPAAC). Leveraging the high photosensitivity of Ru compounds, we demonstrate rapid and equivalent release of epidermal growth factor (EGF) via either direct illumination or via BRET-based bioluminolysis. As NLuc-originated luminescence can be controlled equivalently throughout the body, we anticipate that this unique protein release strategy will find use for locally triggered drug delivery following systemic administration of a small molecule.
Collapse
Affiliation(s)
- Teresa L Rapp
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Abhinav Adhikari
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Molecular Science and Engineering Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
4
|
Zhu H, Cui M, Tang Q, Zhao H, Zhang P, Zeng S, Li W, Zhou Q, Zhang J, Chen Y. Photoactivated full-API nanodrug (FAND): harnessing transition metal complexes and MTH1 inhibitor for enhanced DNA damage in cancer cells. Biomater Sci 2024; 12:3154-3162. [PMID: 38687170 DOI: 10.1039/d4bm00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The effectiveness of photodynamic therapy (PDT) has been greatly restricted by the hypoxic tumor microenvironment and the susceptible resistance of monotherapy. Although nanodrugs based on transition metal complexes capable of integrating PDT with photoactivated chemotherapy (PACT) have garnered tremendous attention as promising candidates for overcoming the above limitations, the therapeutic efficacy of these nanodrugs is still hampered by inadequate loading of active pharmaceutical ingredients (APIs) and the inherent ability of cancer cells to repair damaged DNA. Herein, we developed a photoactivated full-API nanodrug, Ru-T FAND, by one-step self-assembly of RuDPB and TH287. By virtue of its 100 wt% API content and favorable stability in water, the Ru-T FAND exhibited improved cellular uptake behavior and intracellular 1O2 generation. Attractively, the Ru-T FAND with triple anti-cancer modalities can photogenerate 1O2, photo-release DPB ligand and inhibit the repair of DNA damage, ultimately enhancing its phototherapeutic effect on cancer cells. Importantly, the uncaged DPB ligand from RuDPB emits red fluorescence, enabling real-time monitoring of the drug's absorption, distribution and efficacy. Collectively, the presented photoactivated Ru-T FANDs with multiple anti-cancer mechanisms will expand new horizons for the development of safe, efficient and synergistic tumor phototherapy strategies.
Collapse
Affiliation(s)
- Huiyun Zhu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Maozhi Cui
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qiang Tang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hua Zhao
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Pu Zhang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shengmei Zeng
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Weiyu Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yongjie Chen
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Shen S, Qiu J, Huo D, Xia Y. Nanomaterial-Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305426. [PMID: 37803412 PMCID: PMC10922052 DOI: 10.1002/smll.202305426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Photothermal therapy (PTT), which employs nanoscale transducers delivered into a tumor to locally generate heat upon irradiation with near-infrared light, shows great potential in killing cancer cells through hyperthermia. The efficacy of such a treatment is determined by a number of factors, including the amount, distribution, and dissipation of the generated heat, as well as the type of cancer cell involved. The amount of heat generated is largely controlled by the number of transducers accumulated inside the tumor, the absorption coefficient and photothermal conversion efficiency of the transducer, and the irradiance of the light. The efficacy of treatment depends on the distribution of the transducers in the tumor and the penetration depth of the light. The vascularity and tissue thermal conduction both affect the dissipation of heat and thereby the distribution of temperature. The successful implementation of PTT in the clinic setting critically depends on techniques for real-time monitoring and management of temperature.
Collapse
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Kumar V, Mirsky SK, Shaked NT, Gazit E. High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS NANO 2024; 18:2421-2433. [PMID: 38190624 PMCID: PMC10811667 DOI: 10.1021/acsnano.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Simcha K. Mirsky
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan T. Shaked
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Zhang Z, He M, Wang R, Fan J, Peng X, Sun W. Development of Ruthenium Nanophotocages with Red or Near-Infrared Light-Responsiveness. Chembiochem 2023; 24:e202300606. [PMID: 37837285 DOI: 10.1002/cbic.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
The development of light-triggered ruthenium (Ru) nanophotocages has revolutionized conventional methods of drug administration, thereby facilitating cancer therapy in a noninvasive and temperate manner. Ru nanophotocages employ a distinct approach known as photoactivated chemotherapy (PACT), wherein light-induced ligand dissociation yields a toxic metal complex or a ligand capable of performing other functions such as optically controlled protein degradation and drug delivery. Simultaneously, this process is accompanied by the generation of reactive oxygen species (ROS), which serve as an effective anticancer agent in combination with PACT and photodynamic therapy (PDT). Due to its exceptional attributes of extended tissue penetration, and minimized tissue damage, red light or near-infrared light is widely acknowledged as the "phototherapeutic window" (650-900 nm). In this Concept, we present an overview of the most recent advancements in Ru nanophotocages within the phototherapeutic range. Diverse aspects, including design principles, photocaging efficacy, photoactivation mechanisms, and potential applications in the field of biomedical chemistry, are discussed. Questions and challenges regarding their synthesis, characterization, and applications are also discussed. This Concept would foster further exploration into the realm of Ru nanophotocages.
Collapse
Affiliation(s)
- Zongwei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| |
Collapse
|
8
|
Ma Y, Zhang Z, Sun F, Mesdom P, Ji X, Burckel P, Gasser G, Li MH. Red-Light-Responsive Polypeptoid Nanoassemblies Containing a Ruthenium(II) Polypyridyl Complex with Synergistically Enhanced Drug Release and ROS Generation for Anticancer Phototherapy. Biomacromolecules 2023; 24:5940-5950. [PMID: 38033171 DOI: 10.1021/acs.biomac.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Polymer micelles/vesicles made of a red-light-responsive Ru(II)-containing block copolymer (PolyRu) are elaborated as a model system for anticancer phototherapy. PolyRu is composed of PEG and a hydrophobic polypeptoid bearing thioether side chains, 40% of which are coordinated with [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)](PF6)2 via the Ru-S bond, resulting in a 67 wt % Ru complex loading capacity. Red-light illumination induces the photocleavage of the Ru-S bond and produces [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)(H2O)](PF6)2. Meanwhile, ROS are generated under the photosensitization of the Ru complex and oxidize hydrophobic thioether to hydrophilic sulfoxide, causing the disruption of micelles/vesicles. During the disruption, ROS generation and Ru complex release are synergistically enhanced. PolyRu micelles/vesicles are taken up by cancer cells while they exhibit very low cytotoxicity in the dark. In contrast, they show much higher cytotoxicity under red-light irradiation. PolyRu micelles/vesicles are promising nanoassembly prototypes that protect metallodrugs in the dark but exhibit light-activated anticancer effects with spatiotemporal control for photoactivated chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Yandong Ma
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Zhihua Zhang
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Fan Sun
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, Laboratory for Inorganic Chemistry, CNRS, Institute of Chemistry for Life and Health Sciences, PSL University, 75005, Paris, France
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Pierre Burckel
- CNRS, Institut de Physique du Globe de Paris, Université Paris-Cité, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemistry, CNRS, Institute of Chemistry for Life and Health Sciences, PSL University, 75005, Paris, France
| | - Min-Hui Li
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| |
Collapse
|
9
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
10
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Chiechio RM, Caponnetto A, Battaglia R, Ferrara C, Butera E, Musumeci P, Reitano R, Ruffino F, Maccarrone G, Di Pietro C, Marchi V, Lanzanò L, Arena G, Grasso A, Copat C, Ferrante M, Contino A. Internalization of Pegylated Er:Y 2O 3 Nanoparticles inside HCT-116 Cancer Cells: Implications for Imaging and Drug Delivery. ACS APPLIED NANO MATERIALS 2023; 6:19126-19135. [PMID: 37915835 PMCID: PMC10616970 DOI: 10.1021/acsanm.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.
Collapse
Affiliation(s)
- Regina Maria Chiechio
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Angela Caponnetto
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Rosalia Battaglia
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Carmen Ferrara
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Ester Butera
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Paolo Musumeci
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Riccardo Reitano
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Giuseppe Maccarrone
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Valérie Marchi
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Luca Lanzanò
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Giovanni Arena
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Alfina Grasso
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Chiara Copat
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Margherita Ferrante
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Annalinda Contino
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Shee M, Zhang D, Banerjee M, Roy S, Pal B, Anoop A, Yuan Y, Singh NDP. Interrogating bioinspired ESIPT/PCET-based Ir(iii)-complexes as organelle-targeted phototherapeutics: a redox-catalysis under hypoxia to evoke synergistic ferroptosis/apoptosis. Chem Sci 2023; 14:9872-9884. [PMID: 37736623 PMCID: PMC10510766 DOI: 10.1039/d3sc03096b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Installing proton-coupled electron transfer (PCET) in Ir-complexes is indeed a newly explored phenomenon, offering high quantum efficiency and tunable photophysics; however, the prospects for its application in various fields, including interrogating biological systems, are quite open and exciting. Herein, we developed various organelle-targeted Ir(iii)-complexes by leveraging the photoinduced PCET process to see the opportunities in phototherapeutic application and investigate the underlying mechanisms of action (MOAs). We diversified the ligands' nature and also incorporated a H-bonded benzimidazole-phenol (BIP) moiety with π-conjugated ancillary ligands in Ir(iii) to study the excited-state intramolecular proton transfer (ESIPT) process for tuning dual emission bands and to tempt excited-state PCET. These visible or two-photon-NIR light activatable Ir-catalysts generate reactive hydroxyl radicals (˙OH) and simultaneously oxidize electron donating biomolecules (1,4-dihydronicotinamide adenine dinucleotide or glutathione) to disrupt redox homeostasis, downregulate the GPX4 enzyme, and amplify oxidative stress and lipid peroxide (LPO) accumulation. Our homogeneous photocatalytic platform efficiently triggers organelle dysfunction mediated by a Fenton-like pathway with spatiotemporal control upon illumination to evoke ferroptosis poised with the synergistic action of apoptosis in a hypoxic environment leading to cell death. Ir2 is the most efficient photochemotherapy agent among others, which provided profound cytophototoxicity to 4T1 and MCF-7 cancerous cells and inhibited solid hypoxic tumor growth in vitro and in vivo.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Dan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus Guangzhou 511442 PR China
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Samrat Roy
- Department of Physics, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Bipul Pal
- Department of Physics, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus Guangzhou 511442 PR China
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| |
Collapse
|