1
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO 2 Using a Solar Energy Conversion Device. Int J Mol Sci 2024; 25:10608. [PMID: 39408936 PMCID: PMC11476564 DOI: 10.3390/ijms251910608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Huawei Zhou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | - Baoli Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | | |
Collapse
|
3
|
Sultana S, Darowska I, Pisarek M, Sulka GD, Syrek K. Designing TiO 2 Nanotubular Arrays with Au-CoO x Core-Shell Nanoparticles for Enhanced Photoelectrochemical Methanol and Lignin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49262-49274. [PMID: 39230475 PMCID: PMC11420873 DOI: 10.1021/acsami.4c07498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
One-dimensional (1D) ordered TiO2 nanotubes exhibit exceptional charge transfer capabilities, making them suitable candidates for constructing visible-light-active photoanodes in selective PEC oxidation reactions. Herein, we employed a facile and easily scalable electrochemical method to fabricate Au-CoOx-deposited ordered TiO2 nanotubular array photoanodes. The improved visible light absorption capacity of TiO2-Au-CoOx, with unhampered 1D channels and the controlled integration of Au between TiO2 and CoOx, along with their synergistic interaction, have been identified as the most promising strategy for enhanced PEC performance, as evidenced by an IPCE of 3.7% at 450 nm. Furthermore, the robust interfacial charge transfer pathway from CoOx to the TiO2 surface via the Au mediator promotes the migration of photogenerated electrons and enables the accumulation of holes on the surface of CoOx. These holes are then efficiently utilized by oxidants such as methanol or lignin to generate value-added products, highlighting the potential of this system for advanced PEC applications.
Collapse
Affiliation(s)
- Sabiha Sultana
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Izabela Darowska
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pisarek
- Laboratory
of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz D. Sulka
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Syrek
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Wang X, Xiao C, Xie Y, Yang C, Li Y, Zhang Y, Murayama T, Ishida T, Lin M, Xiu G. High-Dimensional Nb 2O 5 with NbO 6 Octahedra for Efficient Electrocatalytic Upgrading of Methanol to Formate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44938-44946. [PMID: 39145598 DOI: 10.1021/acsami.4c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Facilitating the selective electrochemical oxidation of methanol into value-added formate is essential for electrochemical refining. Here we propose a high-dimensional Nb2O5 on Ni foam (Nb2O5-HD@NF) composite as anode for methanol oxidation reaction (MOR) for efficient production of formate. In an electrolyte containing 3 M methanol aqueous solution, the Nb2O5-HD@NF anode requires only 240 mV overpotential to deliver an industrial-level current density of 100 mA cm-2 with a formate Faraday efficiency of 100%. In situ Raman and electrochemical kinetic analyses reveal that the origin of the excellent activity in 3 M methanol electrolyte can be ascribed to the NbO6 octahedra as active sites and the Lewis acid sites on the surface of Nb2O5-HD. This work may pave a way for the design of non-noble metal electrocatalysts with surface acidity engineering for the effective electrocatalytic upgrading of biomass molecules.
Collapse
Affiliation(s)
- Xinlin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Chuqian Xiao
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Yuanming Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Chunqi Yang
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Yuhang Li
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Toru Murayama
- Research Center for Hydrogen Energy-based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mingyue Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
5
|
Wang Q, Gao X, Wei Y, Liu T, Huang Q, Ren D, Zakeeruddin SM, Grätzel M, Wang M, Li Q, Yang J, Shen Y. Boosting Interfacial Electron Transfer and CO 2 Enrichment on ZIF-8/ZnTe for Selective Photoelectrochemical Reduction of CO 2 to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36462-36470. [PMID: 38956932 DOI: 10.1021/acsami.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Artificial photosynthesis is an effective way of converting CO2 into fuel and high value-added chemicals. However, the sluggish interfacial electron transfer and adsorption of CO2 at the catalyst surface strongly hamper the activity and selectivity of CO2 reduction. Here, we report a photocathode attaching zeolitic imidazolate framework-8 (ZIF-8) onto a ZnTe surface to mimic an aquatic leaf featuring stoma and chlorophyll for efficient photoelectrochemical conversion of CO2 into CO. ZIF-8 possessing high CO2 adsorption capacity and diffusivity has been selected to enrich CO2 into nanocages and provide a large number of catalytic active sites. ZnTe with high light-absorption capacity serves as a light-absorbing layer. CO2 molecules are collected in large nanocages of ZIF-8 and delivered to the ZnTe surface. As evidenced by scanning electrochemical microscopy, the interface can effectively boost interfacial electron transfer kinetics. The ZIF-8/ZnTe photocathode with unsaturated Zn-Nx sites exhibits a high Faradaic efficiency for CO production of 92.9% and a large photocurrent of 6.67 mA·cm-2 at -2.48 V (vs Fc/Fc+) in a nonaqueous electrolyte at AM 1.5G solar irradiation (100 mW·cm-2).
Collapse
Affiliation(s)
- Qinglong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaowu Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yan Wei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Taifeng Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P.R. China
| | - Qikang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Dan Ren
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P.R. China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P.R. China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
6
|
Sendeku MG, Shifa TA, Dajan FT, Ibrahim KB, Wu B, Yang Y, Moretti E, Vomiero A, Wang F. Frontiers in Photoelectrochemical Catalysis: A Focus on Valuable Product Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308101. [PMID: 38341618 DOI: 10.1002/adma.202308101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of C─C and C─H bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.
Collapse
Affiliation(s)
- Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tofik Ahmed Shifa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kassa Belay Ibrahim
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Binglan Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying Yang
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
- Department of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
7
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
8
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
9
|
Wang X, Guo A, Wang Y, Chen Z, Guo Y, Xie H, Shan W, Zhang J. Br-doped Cu nanoparticle formed by in situ restructuring for highly efficient electrochemical reduction of CO 2 to formate. J Colloid Interface Sci 2024; 653:238-245. [PMID: 37716303 DOI: 10.1016/j.jcis.2023.09.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Electrochemical conversion of CO2 into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO2 reduction reaction (eCO2RR) due to their low cost and high abundance, but suffer from low selectivity of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCO2RR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm-2 at -0.94 V vs. reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H2. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO2 to formate over Cu-based catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China.
| | - Awei Guo
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Yunlong Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Zhipeng Chen
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Yuxuan Guo
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.,Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Weilong Shan
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
10
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
11
|
Zhai M, Zhang Y, Xu J, Lin H, Wang J, Wang L. Nickel hydroxide-decorating potassium-doped graphitic carbon nitride for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2023; 650:1671-1678. [PMID: 37499623 DOI: 10.1016/j.jcis.2023.07.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
In this study, nickel hydroxide (Ni(OH)2) was employed to modify potassium (K)-doped graphitic carbon nitride (g-C3N4, CN) for enhancing photocatalytic CO2 reduction. The light absorption and charge separation performances of CN were enhanced after modification. Experiments and theoretical calculations indicated that the loaded Ni(OH)2 could gather electrons, facilitate adsorption and activation of CO2. The optimized photocatalyst exhibited high CO2 reductive rate with CO and CH4 yields of 42.6 and 3.5 μmol g-1, respectively after 3 h irradiation in the presence of 0.5 mL water, which was 1.4 and 4.6 times higher than the yields on K-doped CN and Ni(OH)2-decorated CN, respectively. This work provides new thought for enhancing CO2 reductive performance of CN.
Collapse
Affiliation(s)
- Mianmian Zhai
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu Zhang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jixiang Xu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
12
|
Shang Z, Feng X, Chen G, Qin R, Han Y. Recent Advances on Single-Atom Catalysts for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304975. [PMID: 37528498 DOI: 10.1002/smll.202304975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The present energy crisis and environmental challenges may be efficiently resolved by converting carbon dioxide (CO2 ) into various useful carbon products. The development of more effective catalysts has been the main focus of current research on photocatalytic CO2 reduction. Due to their high atomic efficiency and superior catalytic activity, single-atom catalysts (SACs) have attracted considerable interest in catalytic CO2 conversion. This review discusses the current research developments, obstacles, and potential of SACs for photocatalytic CO2 reduction. And further, discusses the principle of photocatalytic carbon dioxide reduction. This work has compared and analyzed the effects of support materials and active site types in SACs on photocatalytic CO2 reduction performance. This work believes that by sharing these developments, some inspiration for the rational design and development of stable and effective photocatalytic CO2 reduction catalysts based on SACs can be provided.
Collapse
Affiliation(s)
- Ziang Shang
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xueting Feng
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
13
|
Qi F, Pu Y, Wu D, Tang X, Huang Q. Recent Advances and Future Perspectives of Lead-Free Halide Perovskites for Photocatalytic CO 2 Reduction. CHEM REC 2023; 23:e202300078. [PMID: 37229755 DOI: 10.1002/tcr.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Indexed: 05/27/2023]
Abstract
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2 BX6 , A2 B(I)B(III)X6 , and A3 B2 X9 -type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.
Collapse
Affiliation(s)
- Fei Qi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Yayun Pu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
14
|
Liu L, Wu X, Wang F, Zhang L, Wang X, Song S, Zhang H. Dual-Site Metal Catalysts for Electrocatalytic CO 2 Reduction Reaction. Chemistry 2023; 29:e202300583. [PMID: 37367498 DOI: 10.1002/chem.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Xu A, Chen X, Wei D, Chu B, Yu M, Yin X, Xu J. Regulating the Electronic Structure of Bismuth Nanosheets by Titanium Doping to Boost CO 2 Electroreduction and Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302253. [PMID: 37211692 DOI: 10.1002/smll.202302253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (E-CO2 RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (TiBi NSs) with enhanced E-CO2 RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4 Ti3 O12 ). We comprehensively evaluated TiBi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of TiBi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 - and enhance the adsorption strength of *OCHO intermediate. The TiBi NSs deliver a high formate Faradaic efficiency (FEformate ) of 96.3% and a formate production rate of 4032 µmol h-1 cm-2 at -1.01 V versus RHE. An ultra-high current density of -338.3 mA cm-2 is achieved at -1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn-CO2 battery using TiBi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm-2 and excellent charging/discharging stability of 27 h.
Collapse
Affiliation(s)
- Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Bingxian Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Meihua Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
- School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|