1
|
Shao F, Sun X, Yu Q, Wang K, Sun C, Wang Q, Cao X, Zhang L, Fu P, Yang X, Yu J, Xu X, Deng W. Lycium barbarum oligosaccharide-derived carbon quantum dots inhibit glial scar formation while promoting neuronal differentiation of neural stem cells. Int J Biol Macromol 2024; 282:137474. [PMID: 39528198 DOI: 10.1016/j.ijbiomac.2024.137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Overexpression of glial fibrillary acidic protein (GFAP) in activated astrocytes following spinal cord injury is closely associated with glial scar formation, which harms axonal regrowth. In this study, we prepared ultrasmall cationic carbon quantum dots (CQDs) via one-step hydrothermal carbonization. Lycium barbarum oligosaccharides were used as the carbon source for the first time, and polyetherimide (PEI) and ethylenediamine (ED) were used as cationic reagents. Interestingly, the resultant CQDs show the bioactivity of specifically inhibiting GFAP protein expression, while promoting neuronal marker expression in neural stem cells (NSCs). Furthermore, CQDs together with NSCs can remarkably improve the motor activity of animals after implantation into the transection lesion of the rat spinal cord. Histological analysis confirmed that CQDs can enhance neuronal differentiation of NSCs while inhibiting glial scar formation in vivo. Altogether, this study represents the first report of producing CQDs from oligosaccharides and investigating their impact on NSCs differentiation, thus providing a paradigm for exploring the bioactivity of quantum dots.
Collapse
Affiliation(s)
- Fengxia Shao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Xuan Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Linzhi Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Peng Fu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xiufen Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| |
Collapse
|
2
|
Yang X, Lotfy VF, Basta AH, Liu H, Fu S. Carbon quantum dots derived from rice straw doped with N and S and its nanocomposites with hydroxypropyl cellulose nanocomposite. Int J Biol Macromol 2024; 278:134925. [PMID: 39217044 DOI: 10.1016/j.ijbiomac.2024.134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
As biomass, rice straw (RS) is often valorized as a precursor of green products. In this respect, the RS-based carbon quantum dots (CQDs) are synthesized doped with N and S during the preparation. Synergistic doping with lipoic acid and ethylenediamine can vastly increase the yield of CQD from rice straw from 6.14 % to 62.8 %, and sulfur doping plays a more important role on the surface functional groups of the quantum dots. Further assessment is achieved toward the performance of SN-CQDs-hydroxypropyl cellulose nanocomposites. The optical behavior of synthesized SN-CQDs, and the critical concentration of its liquid crystal behaviors, at which the anisotropic phase begins to emerge, is approximately 1 %. Incorporating it into HPC, especially at 5 %, provided nanocomposite films with effective liquid crystal, tensile strength, and thermal stability. This sample's texture reveals a planar structure with colors ranging from yellow to red. The synergistic effect of incorporating SN-CQDs is shown by improving the strength to ~282.1 %, and the activation energy increased from 583.6 kJ.mol-1 to 615.1 kJ/mol. HPC-SN-CQDs can be assembled into an LED device, emitting warm light, of which CIE coordinate is (0.34,0.43).
Collapse
Affiliation(s)
- Xuedi Yang
- State Key Lab. of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Vivian F Lotfy
- Cellulose &Paper Dept., National Research Centre, El Buhouth St., Dokki, 12622 Giza, Egypt
| | - Altaf H Basta
- Cellulose &Paper Dept., National Research Centre, El Buhouth St., Dokki, 12622 Giza, Egypt.
| | - Hao Liu
- State Key Lab. of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Fu
- State Key Lab. of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Wang M, Wang L, Hou A, Hong M, Li C, Yue Q. Portable sensing methods based on carbon dots for food analysis. J Food Sci 2024; 89:3935-3949. [PMID: 38865253 DOI: 10.1111/1750-3841.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aiying Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Li C, Zhu X, Xu M. A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors. Molecules 2024; 29:2920. [PMID: 38930988 PMCID: PMC11206910 DOI: 10.3390/molecules29122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
In-depth insights into the oligomers of carbon dots (CDs) prepared from small-molecule precursors are important in the study of the carbonization mechanism of CDs and for our knowledge of their complex structure. Herein, citric acid (CA) and ethylenediamine (EDA) were used as small-molecule precursors to prepare CDs in an aqueous solution. The structure of oligomers acquired from CA and EDA in different molar ratios and their formation process were first studied using density functional theory, including the dispersion correction (DFT-D3) method. The results showed that the energy barrier of dimer cyclization was higher than that of its linear polymerization, but the free energy of the cyclized product was much lower than that of its reactant, and IPCA (5-oxo-1,-2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylic acid) could therefore be obtained under certain conditions. The oligomers obtained from different molar ratios of EDA and CA were molecular clusters formed by short polyamide chains through intermolecular forces; with the exception of when the molar ratio of EDA to CA was 0.5, excessive CA did not undergo an amidation reaction but rather attained molecular clusters directly through intermolecular forces. These oligomers exhibited significant differences in their surface functional groups, which would affect the carbonization process and the surface structure of CDs.
Collapse
Affiliation(s)
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (C.L.); (M.X.)
| | | |
Collapse
|
6
|
Nguyen KG, Huš M, Baragau IA, Bowen J, Heil T, Nicolaev A, Abramiuc LE, Sapelkin A, Sajjad MT, Kellici S. Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310587. [PMID: 38546418 DOI: 10.1002/smll.202310587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Indexed: 06/13/2024]
Abstract
The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.
Collapse
Affiliation(s)
- Kiem G Nguyen
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, Ljubljana, 1000, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, Ljubljana, 1000, Slovenia
| | - Ioan-Alexandru Baragau
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - James Bowen
- School of Engineering and Innovation, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Tobias Heil
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Adela Nicolaev
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Laura Elena Abramiuc
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Andrei Sapelkin
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Muhammad Tariq Sajjad
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Suela Kellici
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
7
|
Li Y, Chen L, Yang S, Wei G, Ren X, Xu A, Wang H, He P, Dong H, Wang G, Ye C, Ding G. Symmetry-Triggered Tunable Phosphorescence Lifetime of Graphene Quantum Dots in a Solid State. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313639. [PMID: 38353607 DOI: 10.1002/adma.202313639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Studying the phosphorescent mechanisms of carbon nanostructures synthesized by the "bottom-up" approach is key to understanding the structure modulation and the interfacial properties of carbon nanostructures. In this work, the relationships among symmetry of precursors in the "bottom-up" synthesis, structures of products, and phosphorescence lifetimes of graphene quantum dots (GQDs) are studied. The symmetry matching of precursors in the formation of a D6h graphene-like framework is considered the key factor in controlling the separability of sp2 domains in GQDs. As the separability of sp2 domains in GQDs increases, the phosphorescence lifetimes (14.8-125.5 ms) of GQDs in the solid state can be tuned. Machine learning is used to define the degree of disorder (S) of the GQD structure, which quantitatively describes the different space groups of precursors. The negative correlation between S and the oscillator strength of GQDs is uncovered. Therefore, S can be recognized as reflective of oscillator strength in the GQD structure. Finally, based on the correlations found between the structures and phosphorescence lifetimes of GQDs, GQDs with an ultralong phosphorescence lifetime (28.5 s) are obtained. Moreover, GQDs with visible phosphorescence emission (435-618 nm) are synthesized.
Collapse
Affiliation(s)
- Yongqiang Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siwei Yang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Genwang Wei
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xue Ren
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Anli Xu
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hang Wang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
9
|
Dutt Sharma V, Kansay V, Chandan G, Bhatia A, Kumar N, Chakrabarti S, Bera MK. Down-conversion luminescence nanocomposites based on nitrogen-doped carbon quantum dots@bioplastic for applications in optical displays, LEDs and UVC tubes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124065. [PMID: 38402703 DOI: 10.1016/j.saa.2024.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Carbon quantum dots (CQDs)-based composites as luminous down-conversion materials are becoming more popular due to several advantages such as steady fluorescence, ease of functionalization, tailoring of emission in the visible range, and so on. We report an inexpensive and environmentally sustainable synthesis of fluorescent nitrogen doped-CQDs produced from Cissus quadrangularis, a low-cost plant precursor with therapeutic value. The morphological, structural, and physicochemical features of the material were carefully investigated. Under UV stimulation (365 nm), almost spherical shaped N-CQDs with an average diameter of 5.1 nm were discovered to generate yellow-green fluorescence, have excellent photostability, and strong water solubility, with a quantum yield of up to 5 %. Furthermore, as a solid-phase dispersion matrix for CQDs, ecologically friendly and biodegradable bioplastic is appealing. The down-conversion of solid-state fluorescence of LEDs and UVC tubes was demonstrated by creating a nanocomposite by inserting N-CQDs into the solid matrix of a wheat starch-based bioplastic. Furthermore, employing constructed quantum dot-based optical displays, down-converted LEDs, and UVC tubes, the impacts of varied CQD concentrations and pH sensitivity were examined.
Collapse
Affiliation(s)
- Varun Dutt Sharma
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala (133207), Haryana, India
| | - Vishal Kansay
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala (133207), Haryana, India
| | - G Chandan
- Department of Biochemistry, M M Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (133207), Haryana, India
| | - Anita Bhatia
- Department of Chemistry, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, India
| | - Nikhil Kumar
- Advanced Materials and Process Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, Jharkhand, India
| | - S Chakrabarti
- Department of Biochemistry, M M Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (133207), Haryana, India
| | - M K Bera
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala (133207), Haryana, India.
| |
Collapse
|
10
|
Li Y, Wang H, Ye C, Wang X, He P, Yang S, Dong H, Ding G. Fast proton transport enables the magnetic relaxation response of graphene quantum dots for monitoring the oxidative environment in vivo. NANOSCALE 2024; 16:2382-2390. [PMID: 38214402 DOI: 10.1039/d3nr05053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A magnetic relaxation switch (MRS) that targets small molecules such as H2O2 is difficult to realize because of the small size of the targets, which cannot gather enough MRS probes to form aggregates and generate a difference in magnetic relaxation times. Therefore, the development of small molecule-targeted MRS is strongly dependent on changes in the interfacial structure of the probe, which modulates the proton transport behavior near the probe. Herein, functionalized graphene quantum dots (GQDs) consisting of GQDs with disulfide bonds, polyethylene glycol (PEG), and paramagnetic Gd3+ were used as the MRS probe to sense H2O2. The structure of GQDs changed after reacting with H2O2. The PEG assembled a tube for transmitting changes in GQDs via proton transport and thus enabled the magnetic relaxation response of the probe towards H2O2. Pentaethylene glycol was experimentally and theoretically proven to have the strongest ability to transport protons. Such a probe can be applied in the differentiation of healthy and senescent cells/tissues using in vitro fluorescent imaging and in vivo magnetic resonance imaging. This work provides a reliable solution for building a proton transport route, which not only enables the response of the MRS probe towards the targets but also demonstrates the design of carbon nanostructures with proton transport behaviors.
Collapse
Affiliation(s)
- Yongqiang Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Hang Wang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xuelian Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Peng He
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Siwei Yang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Hui Dong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Yuan T, Teng Q, Li C, Li J, Su W, Song X, Shi Y, Xu H, Han Y, Wei S, Zhang Y, Li X, Li Y, Fan L, Yuan F. The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. MATERIALS HORIZONS 2024; 11:102-112. [PMID: 37823244 DOI: 10.1039/d3mh01292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The significant features of carbon dots (CDs), such as bright and tunable photoluminescence, high thermal stability, and low toxicity, endow them with tremendous potential for application in next generation optoelectronics. Despite great progress achieved in the design of high-performance CDs so far, the practical applications in solid-state lighting and displays have been retarded by the aggregation-caused quenching (ACQ) effect ascribed to direct π-π interactions. This review provides a comprehensive overview of the recent progress made in solid-state CD emitters, including their synthesis, optical properties and applications in light-emitting diodes (LEDs). Their triplet-excited-state-involved properties, as well as their recent advances in phosphor-converted LEDs and electroluminescent LEDs, are mainly reviewed here. Finally, the prospects and challenges of solid-state CD-based LEDs are discussed with an eye on future development. We hope that this review will provide critical insights to inspire new exciting discoveries on solid-state CDs from both fundamental and practical standpoints so that the realization of their potential in optoelectronic areas can be facilitated.
Collapse
Affiliation(s)
- Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jinsui Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Huimin Xu
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|