1
|
Liu H, Shi W, Guo Y, Mei Y, Rao Y, Chen J, Liu S, Lin C, Nie A, Wang Q, Yuan Y, Xia BY, Yao Y. Supersaturated Doping-Induced Maximized Metal-Support Interaction for Highly Active and Durable Oxygen Evolution. ACS NANO 2024; 18:29724-29735. [PMID: 39401376 DOI: 10.1021/acsnano.4c09249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Metal-support interaction (MSI) is pivotal and ubiquitously used in the development of next-generation catalysts, offering a pathway to enhance both catalytic activity and stability. However, owing to the lattice mismatch and poor solubility, traditional catalysts often exhibit a metal-on-support heterogeneous structure with limited interfaces and interaction and, consequently, a compromised enhancement of properties. Herein, we report a universal and tunable method for supersaturated doping of transition-metal carbides via strongly nonequilibrium carbothermal shock synthesis, characterized by rapid heating and swift quenching. Our results enable ∼20 at. % Ni2FeCo doping in Mo2C, significantly surpassing the thermodynamic equilibrium limit of <3 at. %. The supersaturation ensures more catalytically active NiFeCo doping and sufficient interaction with Mo2C, resulting in the maximized MSI (Max-MSI) effect. The Max-MSI enables outstanding activity and particularly stability in alkaline oxygen evolution reaction, showing an overpotential of 284 mV at 100 mA cm-2 and stable for 700 h, while individual Ni2FeCo and Mo2C only last less than 70 and 10 h (completely dissolved), respectively. In particular, the SD-Mo2C catalyst also exhibits excellent durability at 100 mA cm-2 for up to 400 h in 7 M KOH. Such a significantly improved stability is attributed to the supersaturated doping that led to each Mo atom strongly binding with adjacent heteroatoms, thus elevating the dissolution potential and corrosion resistance of Mo2C at a high current density. Additionally, the highly dispersed NiFeCo also facilitates the formation of dense oxyhydroxide coating during reconstruction, further protecting the integrated catalysts for durable operation. Furthermore, the synthesis has been successfully scaled up to fabricate large (16 cm2) electrodes and is adaptable to nickel foam substrates, indicating promising industrial applications. Our strategy allows the general and versatile production of various highly doped transition-metal carbides, such as Ni2FeCo-doped TiC, NbC, and W2C, thus unlocking the potential of maximized or adjustable MSI for diverse catalytic applications.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhui Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaqing Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yunjie Mei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Rao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinli Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shijing Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qi Wang
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggang Yao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
4
|
Cui C, Bai F, Yang Y, Hou Z, Sun Z, Zhang T. Ion-Exchange-Induced Phase Transition Enables an Intrinsically Air Stable Hydrogarnet Electrolyte for Solid-State Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310005. [PMID: 38572525 PMCID: PMC11165529 DOI: 10.1002/advs.202310005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.
Collapse
Affiliation(s)
- Chenghao Cui
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fan Bai
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Yanan Yang
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Zhiqian Hou
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Zhuang Sun
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Tao Zhang
- State Key Lab of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| |
Collapse
|
5
|
Niu Z, Lu Z, Qiao Z, Wang S, Cao X, Chen X, Yun J, Zheng L, Cao D. Robust Ru-VO 2 Bifunctional Catalysts for All-pH Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310690. [PMID: 38048484 DOI: 10.1002/adma.202310690] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Designing robust bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction in all-pH conditions for overall water splitting (OWS) is an effective way to achieve sustainable development. Herein, a composite Ru-VO2 containing Ru-doped VO2 and Ru nanoparticles (NPs) is synthesized, and it shows a high OWS performance in full-pH range due to their synergist effect. In particular, the OER mass activities of Ru-VO2 at 1.53 V (vs RHE) in acidic, alkaline, and PBS solutions are ≈65, 36, and 235 times of commercial RuO2 in the same conditions. The "Ru-VO2 || Ru-VO2 " two-electrode electrolyzer only needs a voltage of 1.515 V (at 10 mA cm-2 ) in acidic water splitting, which can operate stably for 125 h at 10 mA cm-2 without significant voltage decay. In situ Raman spectra and in situ differential electrochemical mass spectrometry prove that the OER of Ru-VO2 in acid follows the adsorption evolution mechanism. Density functional theory calculations further reveal the synergistic effect between Ru NP and Ru-doped VO2 , which breaks the hydrogen bond network formed by *OH adsorbed on the Ru single-atom site, and thereby significantly enhances the OER activity. This work provides new insights into the design of novel bifunctional pH-universal catalysts for OWS.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhankuan Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohua Cao
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao, 266000, China
- School of Chemical Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Wang T, Zhang X, Yu X, Li J, Wang K, Niu J. Interfacial Interaction in NiFe LDH/NiS 2/VS 2 for Enhanced Electrocatalytic Water Splitting. Molecules 2024; 29:951. [PMID: 38474464 DOI: 10.3390/molecules29050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
A bifunctional electrocatalyst with high efficiency and low costs for overall water splitting is critical to achieving a green hydrogen economy and coping with the energy crisis. However, developing robust electrocatalysts still faces huge challenges, owing to unsatisfactory electron transfer and inherent activity. Herein, NiFe LDH/NiS2/VS2 heterojunctions have been designed as freestanding bifunctional electrocatalysts to split water, exhibiting enhanced electron transfer and abundant catalytic sites. The optimum NiFe LDH/NiS2/VS2 electrocatalyst exhibits a small overpotential of 380 mV at 10 mA cm-2 for overall water splitting and superior electrocatalytic performance in both hydrogen and oxygen evolution reactions (HER/OER). Specifically, the electrocatalyst requires overpotentials of 76 and 286 mV at 10 mA cm-2 for HER and OER, respectively, in alkaline electrolytes, which originate from the synergistic interaction among the facilitated electron transfer and increasingly exposed active sites due to the modulation of interfaces and construction of heterojunctions.
Collapse
Affiliation(s)
- Tingxia Wang
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Xu Zhang
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Xiaojiao Yu
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Junpeng Li
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Kai Wang
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Jinfen Niu
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| |
Collapse
|