1
|
Yang T, Xu X, Chen S, Yang Y, Li F, Fan W, Wu Y, Zhao J, Liu J, Huo Y. A Lithiophilic Donor-Acceptor Polymer Modified Separator for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202420973. [PMID: 39714586 DOI: 10.1002/anie.202420973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
As traditional lithium-ion batteries near their theoretical limits, the advancement of lithium-metal batteries (LMBs) becomes crucial for achieving higher energy densities. However, uncontrolled ion transport and unstable solid electrolyte interface (SEI) layer are key factors inducing lithium dendrite growth, hindering the development of LMBs. Separator modification is an effective strategy to address the challenges of LMBs. To tackle the issues, a donor-acceptor polymer (ArMT) consisting of benzene rings and triazine was successfully synthesized and modified onto commercial polypropylene (ArMT@PP) as separators for LMBs. Benefitting from the highly lithiophilic triazine organic units, this ArMT exhibits affinity towards Li+ and simplifies the solvation structure of Li+ during the diffusion process, thus decreasing the ion diffusion activation energy, thereby accelerating the migration of Li+. Furthermore, triazine organic units with appropriate pore size regulate the plating/stripping behavior of lithium metal anodes, thereby facilitating the formation of a stable solid electrolyte interface (SEI) layer. As a result, the assembled Li|ArMT@PP|Li symmetric cells exhibit stable plating/stripping over 800 h. Moreover, the LiFePO4|ArMT@PP|Li cells achieved excellent cycling stability with 127.3 mAh g-1 after 1200 cycles at 1 C and a high capacity retention of 90.58 %. This design strategy ensures a durable and dendrite-free anode and paves the way for the development of high-energy-density LMBs.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xijun Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Suping Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Fangkun Li
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Weizhen Fan
- Research and Development Center, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou, 510765, China
| | - Yanxue Wu
- Analytical&Testing Center, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jingwei Zhao
- Research and Development Center, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou, 510765, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
- Analytical&Testing Center, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Fan Z, Chen X, Shi J, Nie H, Zhang X, Zhou X, Xie X, Xue Z. Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries. NANO-MICRO LETTERS 2025; 17:128. [PMID: 39907892 PMCID: PMC11799521 DOI: 10.1007/s40820-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
The growing demands for energy storage systems, electric vehicles, and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries. It is essential to design functional separators with improved mechanical and electrochemical characteristics. This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques. In terms of electrolyte wettability and adhesion of the coating materials, we provide an overview of the current status of research on coated separators, in situ modified separators, and grafting modified separators, and elaborate additional performance parameters of interest. The characteristics of inorganics coated separators, organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared. Future directions regarding new modified materials, manufacturing process, quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
Collapse
Affiliation(s)
- Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaoyu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaoming Zhang
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Rong J, Zhang J, Wang W, Miao J, Chen L, Cui S. Quantum-Sized Co Nanoparticles with Rich Vacancies Enabled the Uniform Deposition of Lithium Metal and Fast Polysulfide Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406908. [PMID: 39258366 DOI: 10.1002/smll.202406908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 09/12/2024]
Abstract
The notorious polysulfide shuttling and uncontrollable Li-dendrite growth are the main obstacles to the marketization of Li-S batteries. Herein, a dual-functional material consisting of vacancy-rich quantum-sized Co nanodots anchored on a mesoporous carbon layer (v-Co/meso-C) is proposed. This material exposes more active sites to improve its reaction performance and simultaneously realizes excellent lithiophilicity and sulfiphilicity characteristics in Li-S electrochemistry. As Li metal deposition hosts, v-Co/meso-C shows small nucleation overpotential, low polarization, and ultra-long cycling stability in both half and symmetric cells, as confirmed by experimental studies. On the S cathode side, experimental and theoretical calculations demonstrate that v-Co/meso-C enhances the adsorption of polysulfides and boosts their catalytic conversion rate. This, in turn, suppresses the shuttle effect of polysulfides and improves sulfur utilization efficiency. Finally, a shuttle-free and dendrite-free v-Co/meso-C@Li//v-Co/meso-C@S full cell is fabricated, exhibiting excellent rate performance (739 mAh g-1 at 5.0 C) and good cyclability (capacity decay rate is 0.033% and 0.035% per cycle at 2.0 and 5.0 C, respectively). Even a pouch cell with high sulfur loading (5.5 mg cm-2) and lean electrolyte/sulfur (4.8 µL mg-1) can still work 50 cycles with 80% capacity retention rate. This study shows far-reaching implications in the design of dendrite-free, shuttle-free Li-S batteries.
Collapse
Affiliation(s)
- Jinsheng Rong
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiangjiang Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Wenxin Wang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Junqian Miao
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shiqiang Cui
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
4
|
Li W, Hao Z, Cao S, Chen S, Wang X, Yin H, Tao X, Dai Y, Cong Y, Ju J. Unraveling the Mechanism of Covalent Organic Frameworks-Based Functional Separators in High-Energy Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405396. [PMID: 39136423 DOI: 10.1002/smll.202405396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/07/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks (COFs) are promising porous materials due to their high specific surface area, adjustable structure, highly ordered nanochannels, and abundant functional groups, which brings about wide applications in the field of gas adsorption, hydrogen storage, optics, and so forth. In recent years, COFs have attracted considerable attention in electrochemical energy storage and conversion. Specifically, COF-based functional separators are ideal candidates for addressing the ionic transport-related issues in high-energy batteries, such as dendritic formation and shuttle effect. Therefore, it is necessary to make a comprehensive understanding of the mechanism of COFs in functional separators. In this review, the advantages, applications as well as synthesis of COFs are firstly presented. Then, the mechanism of COFs in functional separators for high-energy batteries is summarized in detail, including pore channels regulating ionic transport, functional groups regulating ionic transport, adsorption effect, and catalytic effect. Finally, the application prospect of COFs-based separators in high-energy batteries is proposed. This review may provide new insights into the design of functional separators for advanced electrochemical energy storage and conversion systems.
Collapse
Affiliation(s)
- Wenjie Li
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Zhendong Hao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Shihai Cao
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Silin Chen
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Xue Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Huimin Yin
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Yuming Dai
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Yuan Cong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Jia Ju
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| |
Collapse
|
5
|
Zhong J, Tong Y, Guo L, Zhang A, Xu Q, Qin Y. Cationic Covalent Organic Framework-Modified Polypropylene Separator for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39371041 DOI: 10.1021/acsami.4c11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As an important component of lithium batteries, the wettability and thermal stability of the separator play a significant role in cell performance. Despite the availability of numerous commercial separators, issues such as low ion selectivity and poor thermal stability continue to limit the efficiency and reliability of the batteries. Herein, two cationic covalent organic frameworks (Br-COF and TFSI-COF) with abundant imidazole cationic groups were designed to modify commercial polypropylene (PP) separators. The strong lithium-ion affinity of the cationic COF enables the effective dissociation of lithium salt ion clusters, simplifying the solvent structure of lithium ions to promote lithium ions transport. Additionally, solvent anions can be anchored to the cationic COF by electrostatic interactions, reducing side reactions on the lithium metal anode surface to form a favorable SEI layer, which can effectively inhibit the growth of lithium dendrites. The rapid dissociation of anions in lithium salts with some organic solvents and cationic COFs was revealed by a molecular dynamics simulation. A LiF-rich SEI layer on the lithium metal anode surface was formed, which can speed up Li+ transport at interfaces, leading to consistent lithium deposition and outstanding battery performance. The ordered porous structure of the cationic COF provides interconnected and continuous channels, improving the wettability between the liquid electrolyte and separators, which is conducive to ion transport. When paired with a LiFePO4 cathode and electrolyte (1.0 M LiTFSI in DEC: EC: DMC = 1:1:1), the LiFePO4/TFSI-COF@PP/Li cell demonstrates a prominent cycling capacity of 148.0 mAh g-1 at 0.5 C with a Coulombic efficiency of 98.0% in the first cycle, and the capacity retention is 82.0% after 100 cycles, showing good cycling stability. Thus, this investigation provides inspiration for the expansion of cationic COF-modified separators for next-generation lithium metal batteries.
Collapse
Affiliation(s)
- Juanqi Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yongfen Tong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Lin Guo
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aiqing Zhang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qiuhua Xu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuancheng Qin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
6
|
Li B, Kang X, Wu X, Hu X. Multiple uniform lithium-ion transport channels in Li 6.4La 3Zr 1.4Ta 0.6O 12/Ce(OH) 3 modified polypropylene composite separator for high-performance lithium metal batteries. J Colloid Interface Sci 2024; 671:621-630. [PMID: 38820846 DOI: 10.1016/j.jcis.2024.05.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Lithium (Li) metal anodes (LMAs) are regarded as leading technology for advanced-generation batteries due to their high theoretical capacity and favorable redox potential. However, the practical integration of LMAs into high-energy rechargeable batteries is hindered by the challenge of Li dendrite growth. In this work, nanoparticles of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) loaded with Ce(OH)3 (LLZTCO) were designed and synthesized by a hydrothermal method. A functional composite separator was crafted by coating one side of a polypropylene (PP) separator with a composite electrolyte comprised of polyvinylidene fluoride (PVDF) and LLZTCO. The synergistic interactions between PVDF and LLZTCO provide numerous rapid lithium-ion (Li+) channels, facilitating the efficient redistribution of disparate Li+ flux originating from the insulated PP separator. The composite separator demonstrated an ionic conductivity (σ) of 3.68 × 10-3 S cm-1, substantial Li+ transference number (t+) of 0.73, and a high electrochemical window of 4.8 V at 25℃. Furthermore, the Li/LLZTCO@PP/Li symmetric cells demonstrated stable cycling for over 2000 h without significant dendrite formation. The Li/LiFePO4 (LFP) cells assembled with LLZTCO@PP separators exhibited a capacity retention of 91.6 % after 400 cycles at 1C. This study offers a practical approach to fabricating composite separators with enhanced safety and superior electrochemical performance.
Collapse
Affiliation(s)
- Bangxing Li
- School of science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xing Kang
- School of science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaofeng Wu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Xiaolin Hu
- School of science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
7
|
Yang Y, Sun Z, Wu Y, Liang Z, Li F, Zhu M, Liu J. Porous Organic Framework Materials (MOF, COF, and HOF) as the Multifunctional Separator for Rechargeable Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401457. [PMID: 38733086 DOI: 10.1002/smll.202401457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The separator is an important component in batteries, with the primary function of separating the positive and negative electrodes and allowing the free passage of ions. Porous organic framework materials have a stable connection structure, large specific surface area, and ordered pores, which are natural places to store electrolytes. And these materials with specific functions can be designed according to the needs of researchers. The performance of porous organic framework-based separators used in rechargeable lithium metal batteries is much better than that of polyethylene/propylene separators. In this paper, the three most classic organic framework materials (MOF, COF, and HOF) are analyzed and summarized. The applications of MOF, COF, and HOF separators in lithium-sulfur batteries, lithium metal anode, and solid electrolytes are reviewed. Meanwhile, the research progress of these three materials in different fields is discussed based on time. Finally, in the conclusion, the problems encountered by MOF, COF, and HOF in different fields as well as their future research priorities are presented. This review will provide theoretical guidance for the design of porous framework materials with specific functions and further stimulate researchers to conduct research on porous framework materials.
Collapse
Affiliation(s)
- Yan Yang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoyu Sun
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Yiwen Wu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Ziwei Liang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Fangkun Li
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Min Zhu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
8
|
Jin H, Pyo S, Seo H, Cho J, Han J, Han J, Yun H, Kim H, Lee J, Min B, Yoo J, Kim YS. LiF-Rich Solid Electrolyte Interphase Formation by Establishing Sacrificial Layer on the Separator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401928. [PMID: 38700385 DOI: 10.1002/smll.202401928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Indexed: 05/05/2024]
Abstract
The formation of a stable solid electrolyte interphase (SEI) layer is crucial for enhancing the safety and lifespan of Li metal batteries. Fundamentally, a homogeneous Li+ behavior by controlling the chemical reaction at the anode/electrolyte interface is the key to establishing a stable SEI layer. However, due to the highly reactive nature of Li metal anodes (LMAs), controlling the movement of Li+ at the anode/electrolyte interface remains challenging. Here, an advanced approach is proposed for coating a sacrificial layer called fluorinated self-assembled monolayer (FSL) on a boehmite-coated polyethylene (BPE) separator to form a stable SEI layer. By leveraging the strong affinity between the fluorine functional group and Li+, the rapid formation of a LiF-rich SEI layer in the cell production and early cycling stage is facilitated. This initial stable SEI formation promotes the subsequent homogeneous Li+ flux, thereby improving the LMA stability and yielding an enhanced battery lifespan. Further, the mechanism behind the stable SEI layer generation by controlling the Li+ dynamics through the FSL-treated BPE separator is comprehensively verified. Overall, this research offers significant contributions to the energy storage field by addressing challenges associated with LMAs, thus highlighting the importance of interfacial control in achieving a stable SEI layer.
Collapse
Affiliation(s)
- Huding Jin
- Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seonmi Pyo
- Battery Manufacturing Engineering Research & Development Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, Republic of Korea
| | - Harim Seo
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jinil Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juyeon Han
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Heejun Yun
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Heebae Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byeongyun Min
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Youn Sang Kim
- Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|
9
|
Wang Q, Wang P, Wang Y, Xu Y, Xu H, Xi K. Design of High-Performance Formyl-Functionalized COF Aerogels as Quasi-Solid Lithium Battery Electrolyte by a Solvent Substitution Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37052-37062. [PMID: 38965714 DOI: 10.1021/acsami.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Covalent organic framework (COF) aerogels with functional groups offer exceptional processability and functionality for various applications. These hierarchical porous materials combine the advantages of COFs with the benefits of aerogels, overcoming the limitations of conventional insoluble and nonfusible COF powders. However, achieving both high crystallinity and shape retention remains a challenge for functionalized COF aerogels. In this work, we develop a novel and general solvent substitution method for the one-step synthesis of formyl-functionalized COF aerogels without harsh vacuum conditions. These aerogels exhibit excellent processing capabilities, superior mechanical strength, and enhanced functionality. As a proof-of-concept, they were used in adsorption and lithium metal battery applications, significantly maximizing the structural advantages of COFs, e.g.: (i) the hierarchical porous structure is fully wetted by the electrolyte to form continuous transport channels; (ii) the polar groups, which are easier to be acquired, help in desolvation and transfer of Li+; (iii) the regular pore structures stabilize deposition of Li+ and inhibit the growth of lithium dendrites. These combined benefits contribute to a lighter battery with improved energy density and enhanced safety.
Collapse
Affiliation(s)
- Qiaomu Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Yandong Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Haocheng Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kai Xi
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Xue J, Sun Z, Sun B, Zhao C, Yang Y, Huo F, Cabot A, Liu HK, Dou S. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. ACS NANO 2024; 18:17439-17468. [PMID: 38934250 DOI: 10.1021/acsnano.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Feng Huo
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou 450046, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IRECSant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREAPg, Lluís Companys 23, Barcelona 08010, Spain
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - ShiXue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Sun J, Kang F, Yan D, Ding T, Wang Y, Zhou X, Zhang Q. Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries. Angew Chem Int Ed Engl 2024; 63:e202406511. [PMID: 38712899 DOI: 10.1002/anie.202406511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Alkali metals (e.g. Li, Na, and K) and multivalent metals (e.g. Zn, Mg, Ca, and Al) have become star anodes for developing high-energy-density rechargeable batteries due to their high theoretical capacity and excellent conductivity. However, the inevitable dendrites and unstable interfaces of metal anodes pose challenges to the safety and stability of batteries. To address these issues, covalent organic frameworks (COFs), as emerging materials, have been widely investigated due to their regular porous structure, flexible molecular design, and high specific surface area. In this minireview, we summarize the research progress of COFs in stabilizing metal anodes. First, we present the research origins of metal anodes and delve into their advantages and challenges as anodes based on the physical/chemical properties of alkali and multivalent metals. Then, special attention has been paid to the application of COFs in the host design of metal anodes, artificial solid electrolyte interfaces, electrolyte additives, solid-state electrolytes, and separator modifications. Finally, a new perspective is provided for the research of metal anodes from the molecular design, pore modulation, and synthesis of COFs.
Collapse
Affiliation(s)
- Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Dongbo Yan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tangjing Ding
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yulong Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hongkong Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| |
Collapse
|
12
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
13
|
Chen J, Liu G, Han X, Wu H, Hu T, Huang Y, Zhang S, Wang Y, Shi Z, Zhang Y, Shi L, Ma Y, Alshareef HN, Zhao J. Engineering High-Performance Li Metal Batteries through Dual-Gradient Porous Cu-CuZn Host. ACS NANO 2024; 18:13662-13674. [PMID: 38752487 PMCID: PMC11140834 DOI: 10.1021/acsnano.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Porous copper (Cu) current collectors show promise in stabilizing Li metal anodes (LMAs). However, insufficient lithiophilicity of pure Cu and limited porosity in three-dimensional (3D) porous Cu structures led to an inefficient Li-Cu composite preparation and poor electrochemical performance of Li-Cu composite anodes. Herein, we propose a porous Cu-CuZn (DG-CCZ) host for Li composite anodes to tackle these issues. This architecture features a pore size distribution and lithiophilic-lithiophobic characteristics designed in a gradient distribution from the inside to the outside of the anode structure. This dual-gradient porous Cu-CuZn exhibits exceptional capillary wettability to molten Li and provides a high porosity of up to 66.05%. This design promotes preferential Li deposition in the interior of the porous structure during battery operation, effectively inhibiting Li dendrite formation. Consequently, all cell systems achieve significantly improved cycling stability, including Li half-cells, Li-Li symmetric cells, and Li-LFP full cells. When paired synergistically with the double-coated LiFePO4 cathode, the pouch cell configured with multiple electrodes demonstrates an impressive discharge capacity of 159.3 mAh g-1 at 1C. We believe this study can inspire the design of future 3D Li anodes with enhanced Li utilization efficiency and facilitate the development of future high-energy Li metal batteries.
Collapse
Affiliation(s)
- Jianyu Chen
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Guanyu Liu
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xuran Han
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hanbo Wu
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tao Hu
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yihang Huang
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shihao Zhang
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yizhou Wang
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Materials
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zixiong Shi
- Materials
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yu Zhang
- New
Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Li Shi
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanwen Ma
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Suzhou
Vocational Institute of Industrial Technology, 1 Zhineng Avenue, Suzhou International Education
Park, Suzhou 215104, China
| | - Husam N. Alshareef
- Materials
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jin Zhao
- State
Key Laboratory of Organic Electronics and Information Displays &
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
14
|
Yadav P, Thakur P, Maity D, Narayanan TN. High Rate, Dendrite Free Lithium Metal Batteries of Extended Cyclability via a Scalable Separator Modification Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308344. [PMID: 38085138 DOI: 10.1002/smll.202308344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Indexed: 05/12/2024]
Abstract
Owing to their great promise of high energy density, the development of safer lithium metal batteries (LMBs) has become the necessity of the hour. Herein, a scalable method based on conventional Celgard membrane (CM) separator modification is adopted to develop high-rate (10 mA cm‒2) dendrite-free LMBs of extended cyclability (>1000 hours, >1500 cycles with 3 mA cm‒2, the bare fails within 50 cycles) with low over potential losses. The CM modification method entails the deposition of thin coatings of (≈6.6 µm) graphitic fluorocarbon (FG) via a large area electrophoretic deposition, where it helps for the formation of a stable LiF and carbon rich solid electrolyte interface (SEI) aiding a uniform lithium deposition even in higher fluxes. The FG@CM delivers a high transport number for Li ion (0.74) in comparison to the bare CM (0.31), indicating a facile Li ion transport through the membrane. A mechanistic insight into the role of artificial SEI formation with such membrane modification is provided here with a series of electrochemical as well as spectroscopic in situ/ex situ and postmortem analyses. The simplicity and scalability of the technique make this approach unique among other reported ones towards the advancement of safer LMBs of high energy and power density.
Collapse
Affiliation(s)
- Preeti Yadav
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | - Pallavi Thakur
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | - Dipak Maity
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | | |
Collapse
|
15
|
Wang Z, Liu F, Li X, Liu B, Lin D, Tian G, Qi S, Wu D. Dual-functional Separators Regulating Ion Transport Enabled by 3D-Reinforced Polyimide Microspheres Protective Layer for Dendrite-Free and High-Temperature Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657160 DOI: 10.1021/acsami.3c19477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
High-energy-density lithium metal batteries (LMBs) are confronted with crucial concerns of security and a short cycle lifespan caused by the uncontrollable formation of lithium (Li) dendrites. The poor thermal stability and heterogeneous Li deposition of conventional polyolefin separators often cause battery short circuiting and thermal runaway in LMBs. Herein, a novel dual-functional PE composite separator (PI-COOH/PE) coated by carboxyl polyimide (PI) microspheres is fabricated by an etching-acidification method. The three-dimensional (3D) high-temp PI microsphere with rich carboxyl groups on the surface improve the security of LMBs at extremely high temperatures and facilitate the formation of a stable and uniform SEI layer, which contributes to accelerating the Li+ transport and stabilizing the formation of the SEI layer. Consequently, the Li symmetric cell assembled with the (PI-COOH)/PE separator exhibits stable overpotential over 3000 h, and the corresponding Li//NCM811 full cells also show a high-level discharge capacity of 146.6 mAh g-1 at 5 C. Meanwhile, it also demonstrates outstanding cycling stability and thermal safety, which can survive continuously over 160 min at 140 °C (vs 21 min for PE). The above results indicate the (PI-COOH)/PE separator constructed by a low-cost and industrial-friendly strategy simultaneously addresses high-temperature stability and dendrite resistance.
Collapse
Affiliation(s)
- Zhaoyi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fangzhou Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaogang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingxue Liu
- China Automotive Battery Research Institute Co., Ltd, Beijing 100088, China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengli Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, Jiangsu China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, Jiangsu China
| |
Collapse
|
16
|
Wu X, Zhang S, Xu X, Wen F, Wang H, Chen H, Fan X, Huang N. Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202319355. [PMID: 38227349 DOI: 10.1002/anie.202319355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The growth of disorganized lithium dendrites and weak solid electrolyte interphase greatly impede the practical application of lithium metal batteries. Herein, we designed and synthesized a new kind of stable polyimide covalent organic frameworks (COFs), which have a high density of well-aligned lithiophilic quinoxaline and phthalimide units anchored within the uniform one-dimensional channels. The COFs can serve as an artificial solid electrolyte interphase on lithium metal anode, effectively guiding the uniform deposition of lithium ions and inhibiting the growth of lithium dendrites. The unsymmetrical Li||COF-Cu battery exhibits a Coulombic efficiency of 99 % at a current density of 0.5 mA cm-2 , which can be well retained up to 400 cycles. Meanwhile, the Li-COF||LFP full cell shows a Coulombic efficiency over 99 % at a charge of 0.3 C. And its capacity can be well maintained up to 91 % even after 150 cycles. Therefore, the significant electrochemical cycling stability illustrates the feasibility of employing COFs in solving the disordered deposition of lithium ions in lithium metal batteries.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Chen M, Fan Y, Zhou H, Li G. ZnO@C Coated Cellulose-Based Separators Control Lithium Deposition Direction to Stable Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306712. [PMID: 37929649 DOI: 10.1002/smll.202306712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Li metal anodes have attracted attention due to their high specific capacity and low electrochemical potential. Nevertheless, the uncontrolled growth of Li dendrites hinders the practical application of Li metal batteries. Although the various approaches have made performance improvements, safety hazards still exist since Li dendrites are still growing along the anode to the separator during the continuous plating/stripping process. Herein, a straightforward method is proposed to achieve stable Li metal batteries with directional growth control by using a functional ZnO@C/cellulose membrane as a separator. The abundant pore structure and functional groups of biomass cellulose enhance the Li-ion transport and interface compatibility. The ZnO transforms in situ to form a Li-Zn alloy layer which is uniformly coated to the separator to direct uniform ion concentration polarization and charge distribution polarization, control the growth direction of Li, significantly improve the cycling stability, and promote the reversibility of the Li plating/exfoliation process. As a result, the symmetric cell exhibits an extreme lifetime of more than 4500 h and low polarization at 3 mA cm-2 . The cycling performance of the Li||LiFePO4 full cell reaches a capacity retention of 98% after 270 cycles at a mass loading of 10 mg cm-2 .
Collapse
Affiliation(s)
- Mei Chen
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, 310014, China
- Zhejiang Xizi Forward Motor Co., Ltd, Hangzhou, 310014, China
| | - Yiqi Fan
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, 310014, China
| | - Hongfang Zhou
- Zhejiang Xizi Forward Motor Co., Ltd, Hangzhou, 310014, China
| | - Guoneng Li
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, 310014, China
| |
Collapse
|
18
|
Wu Y, Wang C, Wang C, Zhang Y, Liu J, Jin Y, Wang H, Zhang Q. Recent progress in SEI engineering for boosting Li metal anodes. MATERIALS HORIZONS 2024; 11:388-407. [PMID: 37975715 DOI: 10.1039/d3mh01434g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Lithium metal anodes (LMAs) are ideal anode candidates for achieving next-generation high-energy-density battery systems due to their high theoretical capacity (3680 mA h g-1) and low working potential (-3.04 V versus the standard hydrogen electrode). However, the non-ideal solid electrolyte interface (SEI) derived from electrolyte/electrode interfacial reactions plays a vital role in the lithium deposition/stripping process and battery cycling performance. The composition and morphology of a SEI, which is sensitive to the outside environment, make it difficult to characterize and understand. With the development of characterization techniques, the mechanism, composition, and structure of a SEI can be better understood. In this review, the mechanism formation, the structure model evolution, and the composition of a SEI are briefly presented. Moreover, the development of in situ characterization techniques in recent years is introduced to better understand a SEI followed by the properties of the SEI, which are beneficial to the battery performance. Furthermore, recent optimization strategies of the SEI including the improvement of intrinsic SEIs and construction of artificial SEIs are summarized. Finally, the current challenges and future perspectives of SEI research are summarized.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Ce Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Chengjie Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yan Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jingbing Liu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yuhong Jin
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
19
|
Gao LT, Lyu Y, Guo ZS. External Pressure Affecting Dendrite Growth and Dissolution in Lithium Metal Batteries During Cycles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58416-58428. [PMID: 38055347 DOI: 10.1021/acsami.3c13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Lithium (Li) metal has garnered significant attention as the preferred anode for high-energy lithium metal batteries. However, safety concerns arising from the growth of Li dendrites have hindered the advancement of Li metal batteries. In this study, we first elucidate the impact of external pressure and internal stress on dendrite growth and dissolution behavior of Li metal batteries during continuous charging-discharging cycles, employing a developed electrochemomechanical phase-field model. A typical parameter is defined to calculate the amount of dead Li that affects the electrochemical performance of Li metal batteries during multiple cycles. The underlying mechanisms of dendrites observed from in situ experiments are explained through the developed phase-field model. After charging/discharging, dendrites with a treelike structure yield a greater amount of dead Li compared to those with a needlelike configuration. Increasing the pressure appropriately can effectively reduce the growth points of dendrites and suppress the Li dendrite growth. Excessive pressure not only induces dendritic fractures that lead to the formation of dead Li but also undermines the battery performance. The accumulated internal stress might threaten the structural stability of the Li metal, thereby influencing the evolution of the Li dendrite morphology. A reasonable strategy is proposed to strike a balance between external pressure and the growth and dissolution of Li dendrites. These findings offer valuable insights into the judicious application of pressure to mitigate the advancement of electroplating reactions.
Collapse
Affiliation(s)
- Li Ting Gao
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Yuhang Lyu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Zhan-Sheng Guo
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|