1
|
Liu J, Han B, Liu X, Liang S, Fu Y, He J, Chung LH, Lin Y, Wei Y, Wang S, Ma T, Yang Z. Tailoring d-Band Center of Single-Atom Nickel Sites for Boosted Photocatalytic Reduction of Diluted CO 2 from Flue Gas. Angew Chem Int Ed Engl 2024:e202417435. [PMID: 39385458 DOI: 10.1002/anie.202417435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the d-band center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 μmol h-1 with a selectivity of 94.5 %, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.
Collapse
Affiliation(s)
- Jiahui Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bin Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xueming Liu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shujie Liang
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Fu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong, 510006, P. R. China
| | - Yuanfang Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yupeng Wei
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350116, P. R. China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Zhang S, Liu S, Luo J, Gu Y, Liu X, Liu F, Tan P, Pan J. Highly-Branched PtCu Nanocrystals with Low-Coordination for Enhanced Oxygen Reduction Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407869. [PMID: 39363644 DOI: 10.1002/smll.202407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Low-coordination platinum-based nanocrystals emanate great potential for catalyzing the oxygen reduction reactions (ORR) in fuel cells, but are not widely applied owing to poor structural stability. Here, several PtCu nanocrystals (PtCu NCs) with low coordination numbers were prepared via a facile one-step method, while the desirable catalyst structures were easily obtained by adjusting the reaction parameters. Wherein, the Pt1Cu1 NCs catalyst with abundant twin boundaries and high-index facets displays 15.25 times mass activity (1.647 A mgPt -1 at 0.9 VRHE) of Pt/C owing to the abundant effective active sites, low-coordination numbers and appropriate compressive strain. More importantly, the core-shell and highly developed dendritic structures in Pt1Cu1 NCs catalyst give it an extremely high stability with only 17.2% attenuation of mass activity while 61.1% for Pt/C after the durability tests (30 000 cycles). In H2-O2 fuel cells, Pt1Cu1 NCs cathode also exhibits a higher peak power density and a longer-term lifetime than Pt/C cathode. Moreover, theoretical calculations imply that the weaker adsorption of intermediate products and the lower formation energy barrier of OOH* in Pt1Cu1 NCs collaboratively boost the ORR process. This work offers a morphology tuning approach to prepare and stabilize the low-coordination platinum-based nanocrystals for efficient and stable ORR.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Juan Luo
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Yuke Gu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd., Kunming, Yunnan, 650106, China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| |
Collapse
|
3
|
Huang L, Niu H, Xia C, Li FM, Shahid Z, Xia BY. Integration Construction of Hybrid Electrocatalysts for Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404773. [PMID: 38829366 DOI: 10.1002/adma.202404773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
There is notable progress in the development of efficient oxygen reduction electrocatalysts, which are crucial components of fuel cells. However, these superior activities are limited by imbalanced mass transport and cannot be fully reflected in actual fuel cell applications. Herein, the design concepts and development tracks of platinum (Pt)-nanocarbon hybrid catalysts, aiming to enhance the performance of both cathodic electrocatalysts and fuel cells, are presented. This review commences with an introduction to Pt/C catalysts, highlighting the diverse architectures developed to date, with particular emphasis on heteroatom modification and microstructure construction of functionalized nanocarbons based on integrated design concepts. This discussion encompasses the structural evolution, property enhancement, and catalytic mechanisms of Pt/C-based catalysts, including rational preparation recipes, superior activity, strong stability, robust metal-support interactions, adsorption regulation, synergistic pathways, confinement strategies, ionomer optimization, mass transport permission, multidimensional construction, and reactor upgrading. Furthermore, this review explores the low-barrier or barrier-free mass exchange interfaces and channels achieved through the impressive multidimensional construction of Pt-nanocarbon integrated catalysts, with the goal of optimizing fuel cell efficiency. In conclusion, this review outlines the challenges associated with Pt-nanocarbon integrated catalysts and provides perspectives on the future development trends of fuel cells and beyond.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- School of Chemical Sciences, The University of Auckland (UOA), Auckland, 1010, New Zealand
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zaman Shahid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
4
|
Cuya Huaman JL, Taniguchi K, Iwata D, Shinoda K, Yokoyama S, Miyamura H, Balachandran J. Synthesis of low-cost multi-element Pt-based alloy nanoparticles as catalysts for the oxygen reduction reaction. NANOSCALE 2024; 16:10841-10852. [PMID: 38769879 DOI: 10.1039/d4nr00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Due to their high catalytic activity, stability, and economic benefits, Pt-based multi-element alloyed nanoparticles (NPs) are considered promising electrodes for oxygen reduction reactions. However, a synthesis method capable of controlling the reduction reaction of elements with different redox potentials to synthesize multimetallic alloy NPs is yet to be developed. In this study, monodisperse NiPtPd alloy NPs with varying compositions were synthesized using 1-heptanol as a reducing solvent. The selection of low-reducing noble metal precursors and complexing agents is done strategically to adjust the reduction time of metal ions. The spectroscopic results confirmed that olelylamine (OAm) preferentially coordinates with Pt ions, while trioctylphosphine (TOP) preferentially coordinates with Pd ions. Consequently, control of the elemental distribution within the particle is successfully achieved by adjusting the OAm/Pt and TOP/Pd molar ratios. Subsequently, Ni78Pt11Pd11 alloy NPs were designed, and their catalytic properties as electrodes in the oxygen reduction reaction (ORR) were examined. Despite a low noble metal content of 22%, the catalytic performance and stability were superior to and comparable to those of commercial Pt NPs, respectively.
Collapse
Affiliation(s)
- Jhon L Cuya Huaman
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan.
| | - Kaneyuki Taniguchi
- Department of Materials Science, The University of Shiga Prefecture, Hikone 522-8533, Japan
| | - Daichi Iwata
- Department of Materials Science, The University of Shiga Prefecture, Hikone 522-8533, Japan
| | - Kozo Shinoda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shun Yokoyama
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan.
| | - Hiroshi Miyamura
- Department of Materials Science, The University of Shiga Prefecture, Hikone 522-8533, Japan
| | | |
Collapse
|
5
|
Zhang X, Wang N, Li Y. The Accurate Synthesis of a Multiscale Metallic Interface on Graphdiyne. SMALL METHODS 2024:e2301571. [PMID: 38795321 DOI: 10.1002/smtd.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Indexed: 05/27/2024]
Abstract
The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Yan W, Xing Q, Ren J, Feng H, Yu J, Liu H, Chen W, Wang K, Chen Y. Enhanced Activity of Small Pt Nanoparticles Decorated with High-Loading Single Fe─N 4 for Methanol Oxidation and Oxygen Reduction via the Assistive Active Sites Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308473. [PMID: 37972267 DOI: 10.1002/smll.202308473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Decorating platinum (Pt) with a single atom offers a promising approach to tailoring their catalytic activity. In this study, for the first time, an innovative assistive active sites (AAS) strategy is proposed to construct high-loading (3.46wt.%) single Fe─N4 as AAS, which are further hybridized with small Pt nanoparticles to enhance both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities. For ORR, the target catalyst (Pt/HFeSA-HCS) exhibits a higher mass activity (MA) of 0.98 A mgPt -1 and specific activity (SA) of 1.39 mA cmPt -2 at 0.90 V versus RHE. As for MOR, Pt/HFeSA-HCS shows exceptional MA (3.21 A mgPt -1) and SA (4.27 mA cmPt -2) at peak values, surpassing commercial Pt/C by 15.3 and 11.5 times, respectively. The underlying mechanism behind this AAS strategy is to find that in MOR, Fe─N4 promotes water dissociation, generating more *OH to accelerate the conversion of *CO to CO2. Meanwhile, in ORR, Fe─N4 acts as a competitor to adsorb *OH, weakening Pt─OH bonding and facilitating desorption of *OH on the Pt surface. Constructing AAS that can enhance dual functionality simultaneously can be seen as a successful "kill two birds with one stone" strategy.
Collapse
Affiliation(s)
- Wei Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Qianli Xing
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jianwei Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jinshi Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenmiao Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Kang Wang
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
7
|
Zhang L, Li T, Du T, Dai X, Zhang L, Tao C, Ding J, Yan C, Qian T. Manipulation of Electronic States of Pt Sites via d-Band Center Tuning for Enhanced Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Inorg Chem 2024; 63:2138-2147. [PMID: 38237037 DOI: 10.1021/acs.inorgchem.3c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.
Collapse
Affiliation(s)
- Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Xinyi Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chen Tao
- School of Electrical Engineering, Nantong University, Nantong226019, China
| | - Jinjin Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| |
Collapse
|