1
|
Yan M, Wang D, Liao H, Gong Y, Ji B, Liu Y, Tao X, Xia Z, Fu Q. High-Efficiency Enzyme Assay and Screening of Enzyme-Inhibiting Nanomaterials Using Capillary Electrophoresis with Hierarchically Porous Metal-Organic Framework-Based Immobilized Enzyme Microreactor. Anal Chem 2024; 96:17300-17309. [PMID: 39411854 DOI: 10.1021/acs.analchem.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enzyme-inhibiting nanomaterials have significant potential for regulating enzyme activity. However, a universal and efficient method for systematically screening and evaluating the inhibitory effects of various nanomaterials on drug target enzymes has not been established. While the integrated technique of immobilized enzyme microreactor (IMER) with capillary electrophoresis (CE) serves as an effective tool for enzyme analysis, it still faces challenges such as low enzyme loadability, unsatisfactory stability, and limited applicability. Herein, hierarchical porous metal-organic frameworks (HP-MOFs) were explored as high-performance enzyme immobilization carriers and stationary phases to develop a novel HP-MOFs-based IMER-CE microanalysis system for efficient online enzyme assay and systematic screening of enzyme-inhibiting nanomaterials. As a proof-of-concept demonstration, the model enzyme xanthine oxidase (XOD) was immobilized on a HP-UiO-66-NH2 coated capillary, serving as an efficient and durable IMER for screening potential XOD-inhibiting nanomaterials. The hierarchically micro- and mesoporous structure and superior enzyme loadability of as-prepared HP-UiO-66-NH2-IMER was intensively characterized, followed by systematic evaluation of the separation performance of HP-UiO-66-NH2 coated column and the enzyme kinetics of the immobilized XOD. Compared to the microporous UiO-66-NH2-IMER, the HP-UiO-66-NH2-IMER-CE system showed significant improvements in enzyme loading, maximum reaction rate, repeatability, and long-term stability. Furthermore, the established method was effectively employed to screen the XOD inhibitory activity of various nanomaterials, revealing that graphene oxide, single wall carbon nanotube and three other nanomaterials exhibited inhibitory potentials. The HP-MOFs-based microanalysis system can be easily expanded by modifying the types of immobilized enzymes and holds the potential to accelerate the identification and rational design of effective enzyme-inhibiting nanomaterials.
Collapse
Affiliation(s)
- Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hongyan Liao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuanmin Gong
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Baian Ji
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yueqin Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Kang JE, Kim H, Lee YH, Lee HY, Park Y, Jang H, Kim JR, Lee MY, Jeong BH, Byun JY, Kim SJ, Lim EK, Jung J, Woo EJ, Kang T, Park KH. Unveiling Cas12j Trans-Cleavage Activity for CRISPR Diagnostics: Application to miRNA Detection in Lung Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402580. [PMID: 39354694 DOI: 10.1002/advs.202402580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/25/2024] [Indexed: 10/03/2024]
Abstract
Cas12j, a hypercompact and efficient Cas protein, has potential for use in CRISPR diagnostics, but has not yet been used because the trans-cleavage activity of Cas12j is veiled. Here, the trans-cleavage behavior of Cas12j1, 2, and 3 variants and evaluate their suitability for nucleic acid detection is unveiled. The target preferences and mismatch specificities of the Cas12j variants are precisely investigated and the optimal Cas12j reaction conditions are determined. As a result, the EXP-J assay for miRNA detection by harnessing the robust trans-cleavage activity of Cas12j on short ssDNA is developed. The EXP-J method demonstrates exceptional detection capabilities for miRNAs, proving that Cas12j can be a pivotal component in molecular diagnostics. Furthermore, the translational potential of the EXP-J assay is validated by detecting oncogenic miRNAs in plasma samples from lung cancer patients. This investigation not only elucidates the trans-cleavage characteristics of Cas12j variants, but also advances the Cas12j-based diagnostic toolkit.
Collapse
Affiliation(s)
- Ju-Eun Kang
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hansol Kim
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Young-Hoon Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ha-Yeong Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yeonkyung Park
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jae-Rin Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Min-Young Lee
- Department of Nano-Bio Convergence, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongsangnam-do, 51508, Republic of Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University (SKKU) School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- School of Pharmacy, SKKU, Suwon, Gyeongi-do, 16419, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- School of Pharmacy, SKKU, Suwon, Gyeongi-do, 16419, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Eui-Jeon Woo
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- School of Pharmacy, SKKU, Suwon, Gyeongi-do, 16419, Republic of Korea
| | - Kwang-Hyun Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Xing Z, Wang C, Fan Z, Qi S, Sun Q, Song RB, Li Z. Substrate-Switched Dual-Signal Self-Powered Sensing System Based on Dual-Nanozyme Activity of Bimetal-Doped CeO 2 Nanospheres for Electrochemical Assay of Aflatoxin B1. Anal Chem 2024; 96:14944-14952. [PMID: 39208160 DOI: 10.1021/acs.analchem.4c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The long-term operation feature of enzymatic biofuel cell-based self-powered biosensor (EBFC-SPB) endows them with the potential to execute dual-signal biosensing without having to integrate an extra signal acquisition device. Herein, cobalt and manganese codoped CeO2 nanospheres (CoMn-CeO2 NSs) with glucose-oxidase-like and peroxidase-like activities have been developed as substrate-switched dual-channel signal transduction components in EBFC-SPB for a dual-signal assay of aflatoxin B1 (AFB1). The CoMn-CeO2 NSs modified with aptamer are anchored to a complementary DNA-attached bioanode of EBFC-SPB by base complementary pairing, which catalyze the glucose oxidation together with the glucose oxidase (GOx) on the bioanode. Once the AFB1 appears, CoMn-CeO2 NSs will be released from the bioanode due to the binding specificity of the aptamer, resulting in a decreased catalytic efficiency and the first declining stage of EBFC-SPB. Accompanied by the introduction of H2O2, the residual CoMn-CeO2 NSs on the bioanode switch to peroxidase-like activity and mediate the production of benzo-4-chlorohexadienone (4-CD) precipitate, which increases the steric hindrance and yields another declining stage of EBFC-SPB. By assessing the variation amplitudes during these two declining stages, the dual-signal assay of AFB1 has been realized with satisfying results. This work not only breaks ground in dual-signal bioassays but also deepens the application of nanozymes in EBFC-SPB.
Collapse
Affiliation(s)
- Zhuo Xing
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Cui Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zeguo Fan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Shujun Qi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qihan Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Rong-Bin Song
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Geng H, Zhi S, Zhou X, Yan Y, Zhang G, Dai S, Lv S, Bi S. Self-Powered Engineering of Cell Membrane Receptors to On-Demand Regulate Cellular Behaviors. NANO LETTERS 2024; 24:7895-7902. [PMID: 38913401 DOI: 10.1021/acs.nanolett.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.
Collapse
Affiliation(s)
- Hongyan Geng
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shuangcheng Zhi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, People's Republic of China
- Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Yongcun Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, People's Republic of China
| | - Senquan Dai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shuzhen Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
5
|
Ma Z, Ma M, Cao X, Jiang Y, Gao D. Droplet digital molecular beacon-LAMP assay via pico-injection for ultrasensitive detection of pathogens. Mikrochim Acta 2024; 191:430. [PMID: 38949666 DOI: 10.1007/s00604-024-06509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/μL in a model plasmid containing the malB gene and 3 CFU/μL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.
Collapse
Affiliation(s)
- Zhiyuan Ma
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School and Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Mengshao Ma
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School and Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaobao Cao
- Guangzhou Laboratory, Guangdong Province, 510320, China.
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School and Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Department of HIV/AIDS Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Dan Gao
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School and Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
6
|
Li J, Chen M, Jiang Q, Zhang W, Lan Y, Ahmed MM, Ma C, Huang J, Xu Q. Upgraded and Light-Up Biosensing Platform: Entropy-Driven Catalysis Circuit Manipulates the Configuration Transformation of Novel DNA Silver Nanoclusters on the Graphene Oxide Surface. Anal Chem 2024; 96:9209-9217. [PMID: 38769607 DOI: 10.1021/acs.analchem.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To tackle the predicament of the traditional turn-off mechanism, exploring an activated turn-on system remains an intriguing and crucial objective in biosensing fields. Herein, a dark DNA Ag nanocluster (NC) with hairpin-structured DNA containing a six-base cytosine loop (6C loop) as a template is atypically synthesized. Intriguingly, the dark DNA Ag NCs can be lit to display strong red-emission nanoclusters. Building upon these exciting findings, an unprecedented and upgraded turn-on biosensing system [entropy-driven catalysis circuit (EDCC)-Ag NCs/graphene oxide (GO)] has been created, which employs an EDCC to precisely manipulate the conformational transition of DNA Ag NCs on the GO surface from adsorption to desorption. Benefiting from the effective quenching of GO and signal amplification capability of the EDCC, the newly developed EDCC-Ag NCs/GO biosensing system displays a high signal-to-background (S/B) ratio (26-fold) and sensitivity (limit of detection as low as 0.4 pM). Meanwhile, it has good specificity, excellent stability, and reliability in both buffer and biological samples. To the best of our knowledge, it is the first example that adopts an EDCC to precisely modulate the configuration transformation of DNA Ag NCs on the GO surface to obtain a biosensor with low background, strong fluorescence, high contrast, and sensitivity. This exciting finding may provide a new route to fabricate a novel turn-on biosensor based on hairpin-templated DNA Ag NCs in the optical imaging and bioanalytical fields.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Minhui Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qi Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yiting Lan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Md Maruf Ahmed
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
7
|
Qiu X, Yang H, Shen M, Xu H, Wang Y, Liu S, Liu Q, Sun M, Ding Z, Zhang L, Wang J, Liang T, Luo D, Gao M, Chen M, Bao J. Multiarmed DNA jumper and metal-organic frameworks-functionalized paper-based bioplatform for small extracellular vesicle-derived miRNAs assay. J Nanobiotechnology 2024; 22:274. [PMID: 38773614 PMCID: PMC11110235 DOI: 10.1186/s12951-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.
Collapse
Affiliation(s)
- Xiaopei Qiu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Man Shen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Hanqing Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Shuai Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Qian Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Minghui Sun
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Zishan Ding
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ligai Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Taotao Liang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Department of Clinical Laboratory Medicine, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, P.R. China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853-5701, USA
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| |
Collapse
|
8
|
You Y, Ren Y, Li Y, Xu J, Li Z, Song S, Xia J, Shen C, Wang J. Interface-constrained catalytic hairpin assembly permits highly sensitive SERS signaling of miRNA. Mikrochim Acta 2024; 191:321. [PMID: 38727732 DOI: 10.1007/s00604-024-06405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/15/2024]
Abstract
The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.
Collapse
Affiliation(s)
- Yuanqi You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yu Ren
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yujun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological, Hefei University of Technology, Hefei, 230009, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, 314001, Jiaxing, People's Republic of China.
| | - Zhi Li
- School of Dentistry, University of California, Los Angeles, USA
| | - Shuai Song
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jinxing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
9
|
Liu S, Shi J, Lin Y, Luo H, Wu Y, Yan J, Tan X, Huang KJ. A sandwich-type dual-mode biosensor based on graphdiyne and DNA nanoframework for ultra-sensitive detection of CD142 gene. Biosens Bioelectron 2024; 248:115962. [PMID: 38150801 DOI: 10.1016/j.bios.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Thalassemia is a globally prevalent single-gene blood disorder, with nearly 7% of the world's population being carriers. Therefore, the development of specific and sensitive methods for thalassemia detection holds significant importance. Herein, a sandwich-type electrochemical/colorimetric dual-mode biosensor is developed based on gold nanoparticles (AuNPs)/graphdiyne (GDY) and DNA nanoframeworks for ultra-sensitive detection of CD142 gene associated with sickle cell anemia. Utilizing AuNPs/GDY as the substrate electrode, the fabricated sandwiched DNA nanoframework not only improves selectivity but also introduces numerous signal probes to further amplify the output signal. In the electrochemical mode, glucose oxidase catalyzes the oxidation of glucose, generating electrons that are transferred to the biocathode for a reduction reaction, resulting in an electric signal proportional to the target concentration. In the colorimetric mode, glucose oxidase catalyzes the generation of H2O2 from glucose, and with the aid of horseradish peroxidase, H2O2 oxidizes 3,3',5,5'-tetramethylbenzidine to produce a colored product, enabling colorimetric detection of the target. The dual-mode biosensor demonstrates a detection range of 0.0001-100 pM in the electrochemical mode and a detection range of 0.0001-10,000 pM in the colorimetric mode. The detection limit in the electrochemical mode is determined to be 30.4 aM (S/N=3), while in the colorimetric mode is of 35.6 aM (S/N=3). This dual-mode detection achieves ultra-sensitive detection of CD142, demonstrating broad prospects for application.
Collapse
Affiliation(s)
- Shiyu Liu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yu Lin
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
10
|
Teng W, Li Q, Zhao J, Shi P, Zhang J, Yan M, Zhang S. A novel dual-mode aptasensor based on a multiple amplification system for ultrasensitive detection of lead ions using fluorescence and surface-enhanced Raman spectroscopy. Analyst 2024; 149:1817-1824. [PMID: 38345074 DOI: 10.1039/d3an02245e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this work, we develop a dual recycling amplification aptasensor for sensitive and rapid detection of lead ions (Pb2+) using fluorescence and surface-enhanced Raman scattering (FL-SERS). The aptasensor allows targeted cleavage of substrates through specifically binding with the Pb2+-dependent aptamer (M-PS2.M). Ultrasensitive detection of trace Pb2+ has been achieved using an enzyme-free nonlinear hybridization chain reaction (HCR) and the FL-SERS technique. The lower limit of detection (LOD = 3σ/k) is 0.115 pM in FL mode and 1.261 fM in SERS mode. The aptasensor is characterized by high reliability and specificity, among other things, to distinguish Pb2+ from other metal ions. In addition, the aptasensor can detect Pb2+ in actual water with good recovery. Compared with the single-mode aptasensor, the dual-mode aptasensor is characterized by high reliability, an extensive detection range, and high specificity.
Collapse
Affiliation(s)
- Wanqing Teng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, PR China.
| | - Qi Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, PR China.
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, PR China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, PR China.
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Shusheng Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, PR China.
| |
Collapse
|
11
|
He C, Hu Y, Qi H, Li P, Yuan R, Yang X. SERS-electrochemical dual-mode detection of microRNA on same interface assisted by exonuclease III signal transformation. Anal Chim Acta 2024; 1293:342286. [PMID: 38331553 DOI: 10.1016/j.aca.2024.342286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Dual-mode sensing has attracted more attentions which provide more accurate and reliable approach of cancer-related biomarkers. Herein, we developed a novel SERS/electrochemical dual-mode biosensor for miRNA 21 detection based on Exo III-assisted signal transformation. Firstly, the Au NPs were deposited on electrode as SERS substrate and Mn3O4/S4(DNA signal strand) was modified on Au NPs/S5 by the DNA strands S5-S4 pairing principle as hydrogen peroxide catalyst, leading to an obviously high DPV electrical signal without Raman signal. Subsequently, the presence of miRNA 21 will activate the Mn3O4/S4 to be decomposed under exonuclease III-assisted process, then the S3' chains modified with Raman molecular Cy3(Cy3-S3') is continuously connected to the Au NPs/S5 by DNA stands S5-S3' pairing principle, leading to the Raman signal response and DPV signal reduction. The biosensor shows good linear calibration curves of both SERS and electrochemical sensing modes with the detection limit of 3.98 × 10-3 nM and 6.89 × 10-5 nM, respectively. This work finds an ingenious mode for dual detection of microRNA on a same interface, which opens a new strategy for SERS and electrochemical analysis.
Collapse
Affiliation(s)
- Chaoqin He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yali Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - HaoPeng Qi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Guo H, Chen J, Feng Y, Dai Z. A Simple and Robust Exponential Amplification Reaction (EXPAR)-Based Hairpin Template (exp-Hairpin) for Highly Specific, Sensitive, and Universal MicroRNA Detection. Anal Chem 2024; 96:2643-2650. [PMID: 38295438 DOI: 10.1021/acs.analchem.3c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Specific and sensitive detection of microRNAs continues to encounter significant challenges, especially in the development of rapid and efficient isothermal amplification strategies for point-of-care settings. The exponential amplification reaction (EXPAR) has garnered significant attention owing to its simplicity and rapid amplification of signals within a short period. However, a substantial loss of amplification efficiency, difficulty in distinguishing closely related homologous sequences, and adapting the designed templates to other targets seriously hamper the practical application of the EXPAR. In this work, a hairpin template tailored for the EXPAR system (exp-Hairpin) was constructed by adding identical trigger sequences and enzyme cleavage sites on two arms of the hairpin, achieving theoretically more than 2n amplification efficiency and minimal background amplification of EXPAR. Modulating the stability of the exp-Hairpin template by increasing the stem length, the specificity of detecting target miRNA in highly homologous sequences could be significantly improved. Using miRNA let-7a as a target model, the exp-Hairpin with 8 bp stem length for EXPAR amplification curves could effectively distinguish target let-7a and nontarget let-7b/7c/7f/7g/7i homologous sequences. This strategy enabled the sensitive and accurate analysis of let-7a in diluted human serum with satisfactory recoveries. By simply replacing the loop recognition sequence of exp-Hairpin, the specific detection of miR-200b was also achieved, demonstrating the universality of this strategy. The exp-Hairpin EXPAR accelerates simple and rapid molecular diagnostic applications for short nucleic acids.
Collapse
Affiliation(s)
- Haijing Guo
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yaqiang Feng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Wang LJ, Liu Q, Lu YY, Liang L, Zhang CY. Silver-Coordinated Watson-Crick Pairing-Driven Three-Dimensional DNA Walker for Locus-Specific Detection of Genomic N6-Methyladenine and N4-Methylcytosine at the Single-Molecule Level. Anal Chem 2024; 96:2191-2198. [PMID: 38282288 DOI: 10.1021/acs.analchem.3c05184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying-Ying Lu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Le Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Liu B, Zhao D, Chen J, Shi M, Yuan K, Sun H, Meng HM, Li Z. DNA Logical Device Combining an Entropy-Driven Catalytic Amplification Strategy for the Simultaneous Detection of Exosomal Multiplex miRNAs In Situ. Anal Chem 2024; 96:1733-1741. [PMID: 38227423 DOI: 10.1021/acs.analchem.3c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Exosomal miRNAs are considered promising biomarkers for cancer diagnosis, but their accuracy is severely compromised by the low content of miRNAs and the large amount of exosomal miRNAs released from normal cells. Here, we presented a dual-specific miRNA's logical recognition triggered by an entropy-driven catalysis (EDC)-enhanced system in exosomes for accurate detection of liver cancer-cell-derived exosomal miR-21 and miR-122. Taking advantage of the accurate analytical performance of the logic device, the excellent membrane penetration of gold nanoparticles, and the outstanding amplification ability of the EDC reaction, this method exhibits high sensitivity and selectivity for the detection of tumor-derived exosomal miRNAs in situ. Moreover, due to its excellent performance, this logic device can effectively distinguish liver cancer patients from healthy donors by determining the amount of cancer-cell-derived exosomal miRNAs. Overall, this strategy has great potential for analyzing various types of exosomes and provides a viable tool to improve the accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Bojun Liu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhao
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Chen
- Zhengzhou Key Laboratory of Criminal Science and Technology, Department of Criminal Science and Technology, Zhengzhou Police College, Zhengzhou 450053, China
| | - Mingqing Shi
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhi Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Wang F, Wang P, Yang H, Cai R, Tan W. Self-Powered Biosensing System with Multivariate Signal Amplification for Real-Time Amplified Detection of PDGF-BB. Anal Chem 2023; 95:16359-16365. [PMID: 37889605 DOI: 10.1021/acs.analchem.3c03662] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
A self-powered biosensing system with multivariate signal amplification is designed for the ultrasensitive, highly efficient, rapid-response, and real-time detection of platelet-derived growth factor-BB (PDGF-BB). The biosensing system is composed of enzymatic biofuel cells (EBFCs), a capacitor, a digital multimeter (DMM), and a computer. Using the hybridization chain reaction (HCR), a few single DNA chains are transformed into abundant double-helix chains, which stimulates the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ by electrostatic interaction, corresponding to the "on" state for HCR. As a result, the open-circuit voltage (EOCV) is significantly increased in this self-powered biosensing system. When PDGF-BB is present, a binding interaction between the target and the aptamer, i.e., PDGF-BB/Apt, corresponding to the "off" state for HCR, results in a decrease of EOCV. The PDGF-BB concentration is inversely proportional to EOCV, allowing readable, effective, and precise real-time detection of PDGF-BB. The detection limit of the biosensing system is 0.031 pg/mL (S/N = 3). This strategy provides a promising and powerful tool for the early clinical diagnosis of related colorectal cancer markers.
Collapse
Affiliation(s)
- Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Peng Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Medicine, and College of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
16
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|