1
|
Zhong T, Huang W, Yao Z, Long X, Qu W, Zhao H, Tian S, Shu D, He C. Engineering of Graphitic Carbon Nitride (g-C 3N 4) Based Photocatalysts for Atmospheric Protection: Modification Strategies, Recent Progress, and Application Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404696. [PMID: 39155427 DOI: 10.1002/smll.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Indexed: 08/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a prominent photocatalyst that has attracted substantial interest in the field of photocatalytic environmental remediation due to the low cost of fabrication, robust chemical structure, adaptable and tunable energy bandgaps, superior photoelectrochemical properties, cost-effective feedstocks, and distinctive framework. Nonetheless, the practical application of bulk g-C3N4 in the photocatalysis field is limited by the fast recombination of photogenerated e--h+ pairs, insufficient surface-active sites, and restricted redox capacity. Consequently, a great deal of research has been devoted to solving these scientific challenges for large-scale applications. This review concisely presents the latest advancements in g-C3N4-based photocatalyst modification strategies, and offers a comprehensive analysis of the benefits and preparation techniques for each strategy. It aims to articulate the complex relationship between theory, microstructure, and activities of g-C3N4-based photocatalysts for atmospheric protection. Finally, both the challenges and opportunities for the development of g-C3N4-based photocatalysts are highlighted. It is highly believed that this special review will provide new insight into the synthesis, modification, and broadening of g-C3N4-based photocatalysts for atmospheric protection.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xianhu Long
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Qu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Li N, Wang J, Liao T, Ma B, Chen Y, Li Y, Fan X, Peng W. Facilely tuning the coating layers of Fe nanoparticles from iron carbide to iron nitride for different performance in Fenton-like reactions. J Colloid Interface Sci 2024; 672:688-699. [PMID: 38865882 DOI: 10.1016/j.jcis.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
In this study, a series of Fe-based materials are facilely synthesized using MIL-88A and melamine as precursors. Changing the mass ratio of melamine and MIL-88A could tune the coating layers of generated zero-valent iron (Fe0) particles from Fe3C to Fe3N facilely. Compared to Fe/Fe3N@NC sample, Fe/Fe3C@NC exhibits better catalytic activity and stability to degrade carbamazepine (CBZ) with peroxymonosulfate (PMS) as oxidant. Free radical quenching tests, open-circuit potential (OCP) test and electron paramagnetic resonance spectra (EPR) prove that hydroxyl radicals (OH) and superoxide radical (O2-) are dominant reactive oxygen species (ROSs) with Fe/Fe3C@NC sample. For Fe/Fe3N@NC sample, the main ROSs are changed into sulfate radicals (SO4-) and high valent iron-oxo (Fe (IV)=O) species. In addition, the better conductivity of Fe3C is beneficial for the electron transfer from Fe0 to the Fe3C, thus could keep the activity of the surface sites and obtain better stability. DFT calculation reveals the better adsorption and activation ability of Fe3C than Fe3N. Moreover, PMS can also be adsorbed on the Fe sites of Fe3N with shorter FeO bonds and longer SO bonds than on Fe3C, the Fe (IV)=O is thus present in the Fe/Fe3N@NC/PMS system. This study provides a novel strategy for the development of highly active Fe-based materials for Fenton-like reactions and thus could promote their real application.
Collapse
Affiliation(s)
- Ningyuan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Tao Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ying Chen
- Department of Chemical Engineering, Tianjin Renai College, Tianjin 301636, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China.
| |
Collapse
|
3
|
Wang X, Ding L, Li X, Wang Z, Xu X, Deng F, Luo X. S-scheme carbon doped-TiO 2/ZnIn 2S 4 heterojunction for enhanced photocatalytic degradation of microcystin-LR and hydrogen evolution. CHEMOSPHERE 2024; 363:142996. [PMID: 39097105 DOI: 10.1016/j.chemosphere.2024.142996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Photocatalytic degradation of pollutants coupled with hydrogen (H2) evolution has emerged as a promising solution for environmental and energy crises. However, the fast recombination of photoexcited electrons and holes limits photocatalytic activities. Herein, an S-scheme heterojunction carbon doped-TiO2/ZnIn2S4 (C-TiO2/ZnIn2S4) was designed by substituting oxygen sites within C-TiO2 by ZnIn2S4. Under visible light irradiation, the optimal C-TiO2/ZnIn2S4 exhibits a higher degradation efficiency (88.6%) of microcystin-LR (MC-LR), compared to pristine C-TiO2 (72.9%) and ZnIn2S4 (66.8%). Furthermore, the H2 yield of the C-TiO2/ZnIn2S4 reaches 1526.9 μmol g-1 h-1, which is 3.83 times and 2.87 times that of the C-TiO2 and ZnIn2S4, respectively. Experimental and theoretical investigations reveal that an internal electric field (IEF) informed in the C-TiO2/ZnIn2S4 heterojunction, accelerates the separation of photogenerated charge pairs, thereby enhancing photocatalytic efficiency of MC-LR degradation and H2 production. This work highlights a new perspective on the development of high-performance photocatalysts for wastewater treatment and H2 generation.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Xibao Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenzhou Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiwei Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Fang Deng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China
| |
Collapse
|
4
|
Zhong Z, You D, Wan Y, Pan Z, Cheng Q. Coupling Cu Coordination Polymers with CdS Forming an S-Scheme Heterojunction for Rapid Charge Separation and High Photocatalytic Activity. Inorg Chem 2024; 63:14509-14524. [PMID: 39021119 DOI: 10.1021/acs.inorgchem.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Energy and the environment are significant impacting factors for the future development of humankind. In order to improve the corrosion resistance of CdS and decrease the recombination of photogenerated carriers, a novel Cu-CPs@CdS heterojunction with high efficiency mesopores was constructed by a simple hydrothermal method. The effective interfacial contact formation between nano-CdS and Cu-CPs promotes the transfer of photogenerated carriers while exhibiting a high spatial separation rate of charges. The photocatalytic performance of the heterojunction was evaluated by the photocatalytic degradation of organic pollutants and photocatalytic hydrogen generation. The photocatalytic degradation of ciprofloxacin (CIP) could reach 90.34%, and the hydrogen generation was high as 9227.82 μmol·g-1 under simulated sunlight irradiation. The boosted photocatalytic activity of Cu-CPs@CdS results from (i) the formation of coordination bonds, which not only enhanced the stability of heterojunctions but also provided a path for photogenerated carrier migration, (ii) integrating Cu-CPs, which provided more active sites, and (iii) the matched energy band structure between CdS and Cu-CPs that promoted speedy S-scheme interfacial charge-transfer pathways, culminating in efficient photogenerated charge separation and transfer. This research offered a fresh tactic to restrict photocorrosion and enhance the production of photocatalytic H2 over CdS-based catalysts.
Collapse
Affiliation(s)
- Zhenfeng Zhong
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Dan You
- School of Chemical and Materials Engineering, College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430073, PR China
| | - Yuqi Wan
- The Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, PR China
| | - Zhiquan Pan
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Qingrong Cheng
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
5
|
Cao H, Yin Z, Dong X, Li Y, Yang Y, Qiu J, Yang Z, Song Z. Enhancing the near-infrared upconversion photocatalytic activity of ZnO/Bi 3Ti 2O 8F:Yb 3+, Er 3+ by modulating the internal electric field through Z-scheme heterojunction construction. J Colloid Interface Sci 2024; 674:79-91. [PMID: 38917714 DOI: 10.1016/j.jcis.2024.06.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Exploring strategies to improve the near-infrared response of photocatalysts is an urgent challenge that can be overcome by utilizing upconversion (UC) luminescence to enhance photocatalysis. This paper reports the fabrication of a ZnO/Bi3Ti2O8F:Yb3+, Er3+ (ZnO/BTOFYE) Z-scheme heterojunction based on a Bi3Ti2O8F:Yb3+, Er3+ (BTOFYE) UC photocatalyst via electrostatic self-assembly. Fermi energy difference at the interface of BTOFYE and ZnO generates a strong internal electric field (IEF) in the Z-scheme heterojunction, offering a novel charge transfer mode that promotes carrier transfer and separation while retaining the strong redox capability. These results are confirmed through in situ X-ray photoelectron spectroscopy, in situ Kelvin probe force microscopy, electron spin resonance, and density functional theory calculations. In addition, the effect of the IEF on the UC luminescence process of Er3+ enhances the luminescence intensity, considerably improving the UC utilization efficiency. The optimal ZnO/BTOFYE degrades 64 % of ciprofloxacin in 120 min, which is 2.3 times more than that degraded by BTOFYE. Overall, the results of this study offer a reference for the rational development of high efficiency UC photocatalysts by generating IEF in Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Haomiao Cao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Zhaoyi Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Xiaoyi Dong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Yongjin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China.
| | - Yong Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Jianbei Qiu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Zhengwen Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China
| | - Zhiguo Song
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 50093, China.
| |
Collapse
|
6
|
Wu X, Li J, Li X, Niu L, Zhang F, Li X, Li J, Shao C, Liu Y. Synergistic Engineering of Energy Band Alignment and Interfacial Electric Field Distribution over Bi-bismuth-Based Hetero-nanofibers for Boosting Visible-Light-Driven Photocatalytic Ammonia Synthesis and Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11263-11276. [PMID: 38743290 DOI: 10.1021/acs.langmuir.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Synergistic engineering of energy band alignment and interfacial electric field distribution is essential for photocatalyst design but is still challenging because of the limitation on refined regulation in the nanoscale. This study addresses the issue by employing surface modification and thermal-induced phase transformation in Bi2MoO6/BixOyIz hetero-nanofiber frameworks. The energy band alignment switches from a type-II interface to a Z-scheme contact with stronger redox potentials and inhibited electron traps, and the optimized built-in electric field distribution could be reached based on experimental and theoretical investigations. The engineered hetero-nanofibers exhibit outstanding visible-light-driven photocatalytic nitrogen reduction activity (605 μmol/g/h) and tetracycline hydrochloride removal rate (81.5% within 30 min), ranking them among the top-performing bismuth series materials. Furthermore, the photocatalysts show promise in activating advanced oxidants for efficient organic pollutant degradation. Moreover, the Bi2MoO6/Bi5O7I hetero-nanofibers possess good recycling stability owing to their three-dimensional network structure. This research offers valuable insights into heterojunction design for environmental remediation and industrial applications.
Collapse
Affiliation(s)
- Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jiaxing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| |
Collapse
|
7
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|