1
|
Niu S, Li H, Guo H, Liu Y, Cheng Y. Accelerating the Reduction Kinetics of V 4+ to V 3+ on Atomically Fe─N 4 Decorated Carbon Nanotubes for Vanadium Electrolyte Preparation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405827. [PMID: 39367560 DOI: 10.1002/smll.202405827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Indexed: 10/06/2024]
Abstract
The high manufacturing cost of vanadium electrolytes is caused by the sluggish kinetics of V4+ to V3+, which restricts the commercialization of all vanadium flow batteries (VFBs). Here, density functional theory calculations first reveal the detailed reaction pathway and point out the rate-determined step by the desorption of the end product [V(H2O)6]3+. Catalytic site engineering at the molecular level can optimize the adsorption energy of [V(H2O)6]3+ to boost the kinetics. Furthermore, iron single-atoms embedded nitrogen-doped carbon nanotubes (FeSA/NCNT) are designed to decrease the adsorption energy of [V(H2O)6]3+. The reaction rate constant of FeSA/NCNT toward V4+ to V3+ is 1.62 × 10-7 cm s-1, 37.5 times that of the commercial carbon catalyst. Therefore, the energy consumption is reduced by 22.5%. Meanwhile, the prepared vanadium electrolyte is of high quality with the ideal oxidation state of + 3.5 without impurities. This work reveals the catalytic mechanism of V4+ to V3+ and proposes a simple but practical strategy to reduce the preparation cost of V3.5+ electrolyte.
Collapse
Affiliation(s)
- Shiyang Niu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haopeng Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hui Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Lin X, Zhang Y, Lin Z, Ding H, Du Z, Ye M, Wen Z, Tang Y, Liu X, Li CC. Achieving Stable Orientational Zinc Deposition for Reversible Zinc Anode through Supramolecular Anchoring Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63668-63680. [PMID: 39504301 DOI: 10.1021/acsami.4c16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Aqueous zinc-ion batteries have been impeded by the hydrogen evolution reaction (HER), uncontrolled zinc dendrites, and side reactions on the Zn anode. In this work, a Zn-polyphenol supramolecular network is rationally designed for stabilizing Zn anodes (ZPN@Zn) even at high current density. Theoretical calculations and experiments show that the zinc-polyphenol supramolecular layer effectively inhibits the hydrogen evolution reaction by capturing water molecules through strong hydrogen bonding networks while also facilitating the rapid replenishment of Zn2+ ions at the interface through supramolecular anchoring. Additionally, it results in preferential deposition of Zn on the (002) plane, thereby contributing to nondendritic and highly reversible Zn plating/stripping behaviors even under high rates. Concomitantly, the ZPN@Zn achieves superior stability of nearly 1200 h at a high current density of 20 mA cm-2 and maintains a high CE efficiency of 99.86% after 3000 cycles at 1 mAh cm-2 and 5 mA cm-2. Remarkably, the full cell assembled with ZPN@Zn and NaV3O8 (NVO) endures 25 000 cycles at 20 A g-1, achieving an impressive performance for the realization of dendrite-free Zn anodes by supramolecular modulation.
Collapse
Affiliation(s)
- Xiaoting Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yufei Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hanlin Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zijian Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Minghui Ye
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhipeng Wen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongchao Tang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqing Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Cheng Chao Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Jaramillo D, Alvarez G, Díaz C, Pérez S, Muñoz Saldaña J, Sierra L, López BL, Moreno-Zuria A, Mohamedi M, Palacio R. Porous carbonaceous materials simultaneously dispersing N, Fe and Co as bifunctional catalysts for the ORR and OER: electrochemical performance in a prototype of a Zn-air battery. Dalton Trans 2024. [PMID: 38236157 DOI: 10.1039/d3dt03330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Infiltration of the mesoporous structure of SBA-15 silica as a hard template with phenanthroline complexes of Fe3+ and Co2+ allowed the simultaneous dispersion of nitrogen, iron and cobalt species on the surface of the obtained carbonaceous CMK-3 silica replica, with potential as bifunctional heterogeneous catalysts for the cathodic oxygen reduction and evolution reactions (ORR and OER). The textural properties and mesopore structure depended on the composition of the material. The carbonaceous FeCoNCMK-3 (1/1), obtained with an Fe/Co molar ratio of 1/1, exhibited an ordered cylindrical mesoporous structure with a high mesopore volume, a rather homogeneous composition in terms of total and surface concentrations of iron and cobalt, and a balanced presence of pyridinic-, pyrrolic- and graphitic-N species. FeCoNCMK-3 (1/1) could improve the ORR kinetics by adsorption and reduction of O2 through the 4-electron mechanism with a current density of -17.37 mA cm-2, Eonset of 1.13 V vs. RHE and E1/2 of 0.75 V when compared to metal-free, monometallic or bimetallic electrocatalysts with a higher amount of cobalt than that of iron. In addition, FeCoNCMK-3 (1/1) exhibited activity for the OER, presenting lower values of Eonset (1.52 V), Ej10 (1.78 V) and the Tafel slope (76.3 mV dec-1) with respect to other catalysts. When evaluated as a cathode in a prototype of a Zn-air battery, FeCoNCMK-3 (1/1) exhibited a high open circuit voltage of 1.41 V, a peak power density of 66.84 mW cm-2, a large specific capacity of 818.88 mA h gZn-1, and cycling for 20 h but with deactivation upon cycling.
Collapse
Affiliation(s)
- Daniela Jaramillo
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - German Alvarez
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Cristian Díaz
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Juan Muñoz Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Betty Lucy López
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Alonso Moreno-Zuria
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec Canada, J3X1P7, Canada
| | - Mohamed Mohamedi
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec Canada, J3X1P7, Canada
| | - Ruben Palacio
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| |
Collapse
|