1
|
Han H, Wang S, Shahbazi MA, Zuhorn IS, Cai Z, Chen J, Li J, Chen Y, Du Y, Bártolo R, Chen L, Santos HA, Cui W. Reactive oxygen species switcher via MnO 2-coated Prussian blue loaded hyaluronic acid methacrylate hydrogel microspheres for local anti-tumor treatment. J Control Release 2024; 378:350-364. [PMID: 39701450 DOI: 10.1016/j.jconrel.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
ROS-induced therapy can eradicate breast tumors when combined with thermal ablation, but excessive ROS also threatens peritumoral tissue with inflammation. To eradicate tumors and avoid inflammatory sequela, it is necessary to generate ROS in treatment stage and scavenge ROS in prognostic stage. However, it is a great challenge to reverse ROS in different stages. Herein, the "ROS switcher" of MnO2-coated Prussian blue (PM) is loaded in hyaluronic acid methacrylate (HAMA) hydrogel microspheres, combining ROS generation by Mn-mediated Fenton-like reaction, and ROS scavenging by Fe3+/2+ electron transfer. Firstly, it is ROS generator that oxidatively damages biomacromolecules in residual tumors, then it is ROS scavenger that reduces pro-inflammatory cytokines and oxidation stress in peritumoral skin. Glucose oxidase is immobilized in HAMA microspheres to enhance ROS supply by catalyzing glucose into H2O2, degrading MnO2 into Mn2+, and providing H2O2 for a Fenton-like reaction. After MnO2 degradation, Prussian blue is gradually exposed and scavenges ROS, thus defending oxidative skin damage and alleviating ROS-stimulated inflammation. In vitro results indicate that the microsphere supplied sustained ROS for up to 5 days, and H2O2-degraded PM (0.2 mg mL-1) scavenged 500 μM H2O2. In vivo results confirm that 4/6 breast tumors were eradicated while pro-inflammatory cytokines were significantly reduced with ROS level in peri-tumoral skin. In summary, ROS switcher is developed by Mn-mediated nano-shell peeling and achieves tumor eradication and post-operative skin repair after thermal ablation of the breast tumor.
Collapse
Affiliation(s)
- Huijie Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124 P. R. China
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Inge S Zuhorn
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Jie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Yu Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Hélder A Santos
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
2
|
Zhang L, Chen X, Zhou B, Meng W, Zeng H, Chen Y, Huang G, Zhang Y, Wang H, Chen M, Chen J. Cocktail strategy-based nanomedicine: A synergistic cascade of starvation, NIR-II photothermal, and gas therapy for enhanced tumor immunotherapy. Acta Biomater 2024:S1742-7061(24)00665-2. [PMID: 39701339 DOI: 10.1016/j.actbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Immunotherapy has emerged as a highly promising strategy in the realm of cancer treatment, wherein immunogenic cell death (ICD) is considered a potential trigger for anti-tumor immunity by inducing adaptive immunity to dying cell antigens. This process is often accompanied by the exposure, active secretion, or passive release of a large number of damage-associated molecular patterns (DAMPs), which activate dendritic cells (DCs) and enhance their antigen-presenting capacity. Subsequently, it promotes the recruitment and activation of cytotoxic T lymphocytes, ultimately leading to tumor growth inhibition. In addition, polarizing the M2 phenotype of tumor-associated macrophages (TAMs) to the M1 phenotype is another way to activate anti-tumor immunity, which can further enhance the effect of anti-tumor immunotherapy. In this study, we engineered a composite nanoparticle of UiO-66-NH2@Gold nanoshells@GOx-P-Arg (denoted as UGsGP). The gold nano shells in UGsGP exhibit a broad Near-Infrared-II (NIR-II) absorption to give a high photothermal conversion efficiency and achieve photothermal therapy (PTT). The GOx in UGsGP involves the breakdown of glucose, which results in a decrease in ATP levels and an inhibition of HSP90 and HSP70 production, ultimately enhancing the heat sensitivity of the tumor for PTT. In addition, GOx-mediated starvation therapy by glucose exhaustion produces a substantial amount of hydrogen peroxide (H2O2), which can then react with P-Arg to produce intratumoral NO Thus, the synergistic effect of PTT resensitization, the photothermally-enhanced GOx-mediated starvation, and NO-based gas therapy promote the induction of ICD and the polarization of TAMs. The combination therapy exhibits significant antitumor effects both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: (1) Gold nanoshells on the surface of UiO-66-NH2 display a broad absorption spectrum ranging from 900 to 1700 nm, combined with a high photothermal conversion efficiency of 74.0 %, demonstrating their remarkable ability to harness and convert light energy into heat for effective tumor ablation. (2) Under laser irradiation, GOx within the UGsGPs effectively consumes glucose, increasing intratumoral H2O2 levels, which then reacts with P-Arg to produce NO within the tumor. Concurrently, the reduction in ATP levels suppresses HSP90 and HSP70 production, thereby enhancing the tumor's sensitivity to photothermal therapy. (3) The synergistic combination of NO gas therapy, starvation therapy, and PTT promotes ICD induction and TAM polarization, thereby improving the therapeutic outcomes for primary and distant tumors.
Collapse
Affiliation(s)
- Lianying Zhang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haifeng Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guoqin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingshan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China.
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
3
|
Liu S, Wu X, Li L, Wang J, Liu W, Yuan SJ, Dai XH. Modulation of the Atomic Spacing of Electrocatalytic for Boosting Reactive Oxygen Species Production to Precise Hepatocellular Carcinoma Cell Apoptosis. ACS NANO 2024. [PMID: 39666311 DOI: 10.1021/acsnano.4c11860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Promoting tumor cell apoptosis through the catalytic regulation of reactive oxygen species (ROS) is an ideal therapeutic option for cancer. However, a stable and controllable exogenous source of ROS is still lacking. Efficient and controllable electrocatalysis has shown tremendous potential for cancer treatment, but its key challenge lies in achieving precise, efficient, and controllable electrocatalytic ROS production at the tumor site. This study describes an electrocatalytic treatment technique for hepatocellular carcinoma (HCC) based on traditional Chinese acupuncture. By attaching a biocompatible electrocatalyst NiO-P700 with optimal atomic spacing to the surface of silver acupuncture needles, a high-concentration ROS microenvironment was generated around tumor cells via ORRs when the needles were electrified. This induction led to the accumulation of inflammatory factors (IL-1β, IL-6, and TNF-α) and macrophage infiltration, accelerating tumor cell apoptosis and necrosis. Both in vitro and in vivo experiments demonstrated that the rate of ROS production can be rapidly controlled by adjusting voltage and current. Importantly, the high concentration of ROS can be safely and effectively confined to the lesion site without affecting the entire body. Our study attempted to integrate electrocatalysis and acupuncture in HCC treatment, successfully regulating NiO-P atomic spacing and enhancing ORR performance, thereby presenting a safe and reliable perspective for HCC therapy.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingjing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shi-Jie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Zhu H, Xia D, He H, Zhang J, Wu D. Polydopamine Decorated Hyaluronic Acid Clusters for Tumor Cell Targeting Combination Therapy via Template Self-Consumption Methods. Macromol Rapid Commun 2024:e2400887. [PMID: 39632414 DOI: 10.1002/marc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Photothermal-chemodynamic-chemotherapy (PTT-CDT-CT) combination therapy significantly enhances the therapeutic efficacy against tumors. However, synthesizing PTT-CDT-CT nanosystems is complex, typically requiring the preparation and conjugation of three components into a single carrier. To overcome this challenge, a facile template self-consumption method is developed. In this approach, hyaluronic acid (HA), recognized for its tumor cell targeting properties, chelates with Cu2+ to form Cu-HA, which then transforms into CuO2@HA cluster templates. These templates self-consume gradually, producing ·OH and Cu2+, which catalyze the rapid polymerization of dopamine and coordinate with polydopamine respectively, enhancing the photothermal conversion efficiency. After gossypol loading, GPDA@HA clusters are formed, achieving high gossypol loading efficiency due to π-π stacking between gossypol and PDA, as well as coordination between gossypol and Cu2+. The GPDA@HA clusters are effectively internalized by tumor cells through endocytosis, mediating the synergistic damage or inhibition of intracellular proteins, and nucleic acids against tumor cells via PTT, CDT, and CT. Crucially, the synergism of PTT-CDT-CT combination therapy far surpasses those of a single modality. This work introduces a new pathway for the synthesis of PTT-CDT-CT nanosystems, avoiding the conventional synthesis and loading of different therapeutic agents, and provides insights into developing personalized drug combination therapies with high efficacy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Huan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
5
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406439. [PMID: 39444066 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
- Intervention Department, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dan Yao
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Mengsi Cai
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Huang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
6
|
Liang H, Yin G, Feng D, Chen H, Liu X, Li J. Research trends on nanomaterials in triple negative breast cancer (TNBC): a bibliometric analysis from 2010 to 2024. Drug Deliv Transl Res 2024:10.1007/s13346-024-01704-9. [PMID: 39242466 DOI: 10.1007/s13346-024-01704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Dandan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hanhan Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
7
|
Tang X, Li Y, Zhu T, Lv L, Liu J. Low-dose X-ray stimulated NO-releasing nanocomposites for closed-loop dual-mode cancer therapy. Biomater Sci 2024; 12:4211-4225. [PMID: 38980700 DOI: 10.1039/d4bm00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
X-ray-excited photodynamic therapy (X-PDT) employs X-rays as an energy source, overcoming the light penetration limitations of traditional photodynamic therapy (PDT) but is constrained by high-energy radiation and the hypoxic tumor microenvironment. Low-dose X-ray-excited photodynamic therapy and reduction of mitochondrial oxygen consumption can serve as significant breakthroughs in overcoming these barriers. In this study, NaLuF4:Tb/Gd (15%/5%)@NaYF4 (ScNP) nanoparticles adsorbing the photosensitizer MC540 and loaded with α-(nitrate ester) acid (NEAA) were prepared as low X-ray dose triggered nano-scintillators. The final product obtained was NaLuF4:Tb/Gd (15%/5%)@NaYF4@mSiO2@MC540@NEAA (ScNP-MS@MC540@NEAA) nanocomposites, which exhibited intense green luminescence. X-PDT generates cytotoxic reactive oxygen species (ROS) with minimal ionizing radiation damage. Simultaneously, NEAA reacts with glutathione (GSH) to generate nitric oxide (NO) for gaseous treatment of the damaged mitochondrial respiratory chain to reduce oxygen consumption and alleviate hypoxia, enhancing the X-PDT efficacy and realizing a closed-loop treatment. The superoxide ions (˙O2-) can rapidly react with NO produced to form the highly cytotoxic reactive nitrogen species (RNS) peroxynitrite anion (ONOO-), which exhibits higher cytotoxicity compared to ROS. Furthermore, GSH scavenges toxic ROS and maintains the physiological function of tumor cells. It can induce cancer cell overoxidation and nitrosative stress. This work describes a low-dose X-ray-triggered X-PDT system with total radiation of 50 mGy, which involves GSH consumption, self-supplied NO, mitochondrial damage alleviation, and hypoxia relief to generate ROS and RNS, forming a closed-loop anti-hypoxia dual-mode system with synergistically enhanced anti-tumor effects, without significant biological side effects. It provides a promising platform for deep-seated tumor X-PDT with considerable application prospects.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Longhao Lv
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
8
|
Xu P, Chi J, Wang X, Zhu M, Chen K, Fan Q, Ye F, Shao C. In vitro vascularized liver tumor model based on a microfluidic inverse opal scaffold for immune cell recruitment investigation. LAB ON A CHIP 2024; 24:3470-3479. [PMID: 38896021 DOI: 10.1039/d4lc00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Liver cancer, characterized as a kind of malignant tumor within the digestive system, poses great health harm, and immune escape stands out as an important reason for its occurrence and development. Chemokines, pivotal in guiding immune cells' migration, is necessary to initiate and deliver an effective anti-tumor immune response. Therefore, understanding the chemotactic environment and identifying chemokines that regulate recruitment of immune cells to the tumor microenvironment (TME) are critical to improve current immunotherapy interventions. Herein, we report a well-defined inverse opal scaffold generated with a microfluidic emulsion template for the construction of a vascularized liver tumor model, offering insights into immune cells' recruitment. Due to the excellent 3D porous morphology of the inverse opal scaffold, human hepatocellular carcinoma cells can aggregate in the pores of the scaffold to form uniform multicellular tumor spheroids. More attractively, the vascularized liver tumor model can be achieved by constructing a 3D co-culture system involving endothelial cells and hepatocellular carcinoma cells. The results demonstrate that the 3D co-cultured tumor cells increase the neutrophil chemokines remarkably and recruit neutrophils to tumor tissues, then promote tumor progression. This approach opens a feasible avenue for realizing a vascularized liver tumor model with a reliable immune microenvironment close to that of a solid tumor of liver cancer.
Collapse
Affiliation(s)
- Pingwei Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Junjie Chi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaochen Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Changmin Shao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
9
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2024:S2090-1232(24)00180-2. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|