1
|
Fan K, Zhang L, Zhong Q, Xiang Y, Xu B, Wang Y. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. J Mater Chem B 2024; 12:5140-5149. [PMID: 38712564 DOI: 10.1039/d4tb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 μg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ludan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Qinqiu Zhong
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
2
|
Yang H, Chen D, Zhang Y, Yuan P, Xie N, Dai Z. MiRNA and mRNA-Controlled Double-Cascaded Amplifying Circuit Nanosensor for Accurate Discrimination of Breast Cancers in Living Cells, Animals, and Organoids. Anal Chem 2024; 96:4154-4162. [PMID: 38426698 DOI: 10.1021/acs.analchem.3c05085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Metastasis is the leading cause of death in patients with breast cancer. Detecting high-risk breast cancer, including micrometastasis, at an early stage is vital for customizing the right and efficient therapies. In this study, we propose an enzyme-free isothermal cascade amplification-based DNA logic circuit in situ biomineralization nanosensor, HDNAzyme@ZIF-8, for simultaneous imaging of multidimensional biomarkers in live cells. Taking miR-21 and Ki-67 mRNA as the dual detection targets achieved sensitive logic operations and molecular recognition through the cascade hybridization chain reaction and DNAzyme. The HDNAzyme@ZIF-8 nanosensor has the ability to accurately differentiate breast cancer cells and their subtypes by comparing their relative fluorescence intensities. Of note, our nanosensor can also achieve visualization within breast cancer organoids, faithfully recapitulating the functional characteristics of parental tumor. Overall, the combination of these techniques offers a universal strategy for detecting cancers with high sensitivity and holds vast potential in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Huihui Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Peixiu Yuan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Liu X, Zhen Y, Ye N, Zhang L. Label-free microRNA detection using a locked-to-unlocked transforming system assembled by microfluidics. LAB ON A CHIP 2022; 22:4984-4994. [PMID: 36426714 DOI: 10.1039/d2lc00911k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MicroRNA (miRNA) is a potential biomarker for the early screening and diagnosis of cancers and is widely present in human blood, urine and saliva. Here, we report a microfluidics-assembled tool for miRNA detection based on the regulation of DNA locked and unlocked states and explore its application in complex samples. Microfluidic techniques are used to continuously assemble the locked-to-unlocked transforming system using a rapid one-step method. It only takes 2 min to produce enough locked-to-unlocked systems for a miRNA detection experiment. DNA molecules with a recognition sequence and a G-rich reporter sequence (G4m) are locked by attaching both ends to the surface of magnetic beads (MBs) in microchannels. The presence of the target miRNA can initiate the specific cleavage of one end of G4m by duplex-specific nuclease, resulting in the transition of G4m from a locked state to an unlocked state. This transition enables G4m to freely fold into a G-quadruplex, which can participate in the catalysis of ABTS oxidation and result in a turquoise color. During the whole process, the target miRNA remains intact and continuously initiate specific cleavage, facilitating signal amplification. Magnetic separation steps are employed to assist in miRNA enrichment and interference reduction. As a proof of concept, we quantified miRNA-21 using the locked-to-unlocked system. The assay allows specific detection of miRNA-21 in the range of 3.2-570 pM with a detection limit of 2.01 pM (S/N = 3). Furthermore, the locked-to-unlocked system is used to analyze miRNA-spiked urine, saliva and serum samples and shows robust performance in different matrices.
Collapse
Affiliation(s)
- Xuting Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Yi Zhen
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| |
Collapse
|
5
|
Fang Y, Zhu S, Cheng W, Ni Z, Xiang N. Efficient bioparticle extraction using a miniaturized inertial microfluidic centrifuge. LAB ON A CHIP 2022; 22:3545-3554. [PMID: 35989675 DOI: 10.1039/d2lc00496h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional bioparticle extraction requires labor-intensive operation, and expensive and bulky centrifuges. Herein, we report a miniaturized centrifuge by cascading four paralleled inertial spiral channels with a two-stage serpentine channel, allowing for the efficient washing and acquisition of concentrated bioparticles from background fluids. First, the effects of channel size and flow rate on particle focusing dynamics and solution exchange performances are explored to enable the optimization and wide application of our device. Then, the integrated device is fabricated and tested experimentally. The results indicate that 10-20 μm particles can be washed from the original samples with increased concentrations and with recovery efficiencies of >93%. Finally, to verify its versatility, we use our miniaturized centrifuge to successfully change the culture medium for cultured MCF-7 breast cancer cells, extract A549 lung cancer cells from a calcein-AM staining solution, purify white blood cells (WBCs) from lysed whole blood, and extract target cells from an unbonded magnetic microbead background. Compared with conventional centrifuges, our device has the advantages of simple fabrication, easy operation, and small footprint. More importantly, it offers outstanding capability for extracting bioparticles from various background fluids, and avoids bioparticle damage that may be caused by high-speed centrifugation. Therefore, we envision that our miniaturized centrifuge could be a promising alternative to traditional centrifuges in many applications.
Collapse
Affiliation(s)
- Yaohui Fang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
7
|
Lv W, Han Z, Li Y, Huang Y, Sun J, Lu X, Liu C. Exosome‐Coated
Zeolitic Imidazolate Framework Nanoparticles for Intracellular Detection of
ATP
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenxing Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Ziwei Han
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yike Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|