1
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Samyn P, Everaerts J, Chandroth AM, Cosemans P, Malek O. A feasibility study on femtosecond laser texturing of sprayed nanocellulose coatings. Carbohydr Polym 2024; 340:122307. [PMID: 38858026 DOI: 10.1016/j.carbpol.2024.122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
Nanocelluloses are emerging as natural materials with favourable properties for coating industry and can be applied by state-of-the-art spraying technology. While additional functionalities are commonly introduced through chemical modification, the surface microstructuring of nanocellulose coatings with high throughput methods remains unexplored. Here, a femtosecond laser is used for texturing spray-coated coatings made of cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC). For coating thickness of 1.5 to 8 μm, processing limits were determined with maximum ablation energy linearly increasing with coating thickness and minimum ablation energy decreasing or increasing depending on the apparent coating density. Within applicable processing window of pulse rate and power setting, the operational ranges were determined for creating one-dimensional and two-dimensional surface patterns, requiring a higher laser energy for CNC compared to CNF coatings and yielding thinnest possible resolved patterns of 17 μm as determined by the laser spot diameter. The laser ablation under low energy corresponds to an increase in surface roughness and intensifies surface hydrophilicity, while the line patterns are able to pin water droplets with rising water contact angles up to 90°. Present feasibility study opens future possibilities for managing surface properties of nanocellulose coatings in applications where tuning of surface hydrophilicity is required.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department of Innovations in Circular Economy and Renewable Materials, Gaston Geenslaan 8, B-3001 Leuven, Belgium.
| | - Joris Everaerts
- KULeuven, Department of Materials Engineering, Kasteelpark Arenberg 44 box 2450, B-3001 Leuven, Belgium
| | | | - Patrick Cosemans
- SIRRIS, Department of Innovations in Circular Economy and Renewable Materials, Gaston Geenslaan 8, B-3001 Leuven, Belgium
| | - Olivier Malek
- SIRRIS, Department of Manufacturing Systems and Technologies, Thor park 8027, B-3600 Genk, Belgium
| |
Collapse
|
3
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
4
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
5
|
Liao Q, Cheng H, Qu L. Droplet-Pen Writing of Ultra-Uniform Graphene Pattern for Multi-Spectral Applications. SMALL METHODS 2024:e2400384. [PMID: 38708684 DOI: 10.1002/smtd.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Artificial optical patterns bring wide benefits in applications like structural color display, photonic camouflage, and electromagnetic cloak. Their scalable coating on large-scale objects will greatly enrich the multimodal-interactive society. Here, a droplet-pen writing (DPW) method to directly write multi-spectral patterns of thin-film graphene is reported. By amphiphilicity regulations of 2D graphene nanosheets, ultra-uniform and ultrathin films can spontaneously form on droplet caps and pave to the substrate, thus inducing optical interference. This allows the on-surface patterning by pen writing of droplets. Specifically, drop-on-demand thin films are achieved with millimeter lateral size and uniformity up to 97% in subwavelength thickness (<100 nm), corresponding to an aspect ratio of over 30 000. The pixelated thin-film patterns of disks and lines in an 8-inch wafer scale are demonstrated, which enable low-emittance structural color paintings. Furthermore, the applications of these patterns for dual-band camouflage and infrared-to-visible encryption are investigated. This study highlights the potential of 2D material self-assembly in the large-scale preparation and multi-spectral application of thin film-based optical patterns.
Collapse
Affiliation(s)
- Qihua Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
7
|
Yadav KK, Shamir D, Kornweitz H, Peled Y, Zohar M, Burg A. Development of Meta-Chemical Surface by Dip-Pen Nanolithography for Precise Electrochemical Lead Sensing. SMALL METHODS 2024; 8:e2301118. [PMID: 38029319 DOI: 10.1002/smtd.202301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Dip-pen nanolithography (DPN) is a powerful and unique technique for precisely depositing tiny nano-spherical cap shapes (nanoclusters) onto a desired surface. In this study, a meta-chemical surface (MCS; a pattern with advanced features) is developed by DPN and applied to electrochemical lead sensing, yielding a calibration curve in the ppb range. An ink mixture of PMMA and NTPH (which binds to Pb (II), as supported by DFT calculations) is patterned over a Pt surface. The average height of the nanoclusters is ≈13 nm with a high surface area-to-volume ratio, which depends on the ink composition and the MCS surface. This ratio affected the sensitivity of the MCS as a detecting tool. The results indicate that the sensor's features can be controlled by the ability to control the size of the nanoclusters, attributed to the unique properties of the DPN production method. These results are significant for the water-source purification industry.
Collapse
Affiliation(s)
- Krishna K Yadav
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel
| | - Dror Shamir
- Analytical Chemistry Department, NRCN, Beer-Sheva, Israel
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Yael Peled
- Analytical Chemistry Department, NRCN, Beer-Sheva, Israel
| | - Moshe Zohar
- Department of Electrical and Electronics Engineering, Sami Shamoon College of Engineering, Beer Sheva, 8410802, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel
| |
Collapse
|
8
|
Yamagishi R, Miura S, Yabu K, Ando M, Hachikubo Y, Yokoyama Y, Yasuda K, Takei S. Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold. Gels 2024; 10:65. [PMID: 38247787 PMCID: PMC10815747 DOI: 10.3390/gels10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis reactions in nanoimprint lithography processes under refrigeration at 5 °C, where thermal decomposition of microneedle components can be avoided. The moldability, strength, and dissolution behavior of sodium hyaluronate hydrogels with different molecular weights were compared to evaluate the suitability of ultrafine microneedles with a bottom diameter of 40 μm and a height of 80 μm. The appropriate molecular weight range and formulation of pure sodium hyaluronate hydrogels were found to control the dissolution behavior of self-dissolving ultrafine microneedles while maintaining the moldability and strength of the microneedles. This fabrication technology of ultrafine microneedles expands their possibilities as a next-generation technique for bioactive gels for controlling the blood levels of drugs and avoiding pain during administration.
Collapse
Affiliation(s)
- Rio Yamagishi
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Sayaka Miura
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Kana Yabu
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Mano Ando
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yuna Hachikubo
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yoshiyuki Yokoyama
- Toyama Industrial Technology Research and Development Center, Takaoka 933-0981, Toyama, Japan;
| | - Kaori Yasuda
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Satoshi Takei
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| |
Collapse
|
9
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China.
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710127, China.
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
11
|
Wang J, Fang W, Liu H. Gold Triangular Nanoprisms: Anisotropic Plasmonic Materials with Unique Structures and Properties. Chempluschem 2023; 88:e202200464. [PMID: 36781389 DOI: 10.1002/cplu.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
As a novel type of anisotropic inorganic nanomaterials, gold triangular nanoprisms (AuTNPs) have been widely studied for their well-defined structures and excellent plasmonic properties. This review starts with synthetic methodology, combing through the early thermal solution method to the mature seed-mediated method and seedless method. The possible mechanisms proposed by predecessors and the problems needed to be solved are also arranged. Along with this, the important morphological evolution process of AuTNPs during synthesis and post-synthesis stages are revealed, which is of great significance for further understanding the structure of AuTNPs and developing new synthesis strategies. Finally, the applications of AuTNPs, especially associated with plasmonic properties, are listed and summarized where surface-enhanced Raman scattering (SERS), catalysis, phototherapy and biosensor are included, so that researchers can quickly comprehend the current situation, and provide a basis for further development and exploration of AuTNPs.
Collapse
Affiliation(s)
- Jiangming Wang
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, P. R. China
| | - Weina Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Huajie Liu
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
12
|
Chung SC, Park JS, Jha RK, Kim J, Kim J, Kim M, Choi J, Kim H, Park DH, Gogurla N, Lee TY, Jeon H, Park JY, Choi J, Kim G, Kim S. Engineering Silk Protein to Modulate Polymorphic Transitions for Green Lithography Resists. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56623-56634. [PMID: 36524808 DOI: 10.1021/acsami.2c17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions to silk. Here, we report how polymorphic transitions are related with molecular structures of artificially synthesized silk protein and design principles to construct a green-lithographic and high-performative protein resist. The repetition number and ratio of two major building blocks in synthesized silk protein are essential to determine the size and content of β-sheet crystallites, and radicals resulting from tyrosine cleavages by the 193 nm laser irradiation induce the β-sheet to α-helix transition. Synthesized silk is designed to exclusively comprise homogeneous building blocks and exhibit high crystallization and tyrosine-richness, thus constituting an excellent basis for developing a high-performance deep-UV photoresist. Additionally, our findings can be conjugated to design an electron-beam resist governed by the different irradiation-protein interaction mechanisms. All synthesis and lithography processes are fully water-based, promising green lithography. Using the engineered silk, a nanopatterned planar color filter showing the reduced angle dependence can be obtained. Our study provides insights into the industrial scale production of silk protein with on-demand functions.
Collapse
Affiliation(s)
- Soon-Chun Chung
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Joon-Song Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Rakesh Kumar Jha
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Jieun Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Jinha Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Muyoung Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials, Daejeon 34103, Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Hongdeok Kim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Da-Hye Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Narendar Gogurla
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Tae-Yun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Ji-Yong Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Joonmyung Choi
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Ginam Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Controllable depositing behaviors and deposited morphologies of inkjet droplets on high energy surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Ribeiro S, Pugliese E, Korntner SH, Fernandes EM, Gomes ME, Reis RL, O'Riordan A, Bayon Y, Zeugolis DI. Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. Eng Life Sci 2022; 22:619-633. [PMID: 36247829 PMCID: PMC9550738 DOI: 10.1002/elsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.
Collapse
Affiliation(s)
- Sofia Ribeiro
- MedtronicSofradim ProductionTrevouxFrance
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Eugenia Pugliese
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stefanie H. Korntner
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Emanuel M. Fernandes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Yves Bayon
- MedtronicSofradim ProductionTrevouxFrance
| | - Dimitrios I. Zeugolis
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL)Charles Institute of DermatologyConway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials EngineeringUniversity College Dublin (UCD)DublinIreland
| |
Collapse
|
15
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
16
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
17
|
Wysokowski M, Nowacki K, Jaworski F, Niemczak M, Bartczak P, Sandomierski M, Piasecki A, Galiński M, Jesionowski T. Ionic liquid-assisted synthesis of chitin-ethylene glycol hydrogels as electrolyte membranes for sustainable electrochemical capacitors. Sci Rep 2022; 12:8861. [PMID: 35614197 PMCID: PMC9132938 DOI: 10.1038/s41598-022-12931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
A novel chitin–ethylene glycol hybrid gel was prepared as a hydrogel electrolyte for electrical double-layer capacitors (EDLCs) using 1-butyl-3-methylimidazolium acetate [Bmim][Ac] as a chitin solvent. Examination of the morphology and topography of the chitin–EG membrane showed a homogeneous and smooth surface, while the thickness of the membrane obtained was 27 µm. The electrochemical performance of the chitin–EG hydrogel electrolyte was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. The specific capacitance value of the EDLC with chitin–EG hydrogel electrolyte was found to be 109 F g−1 in a potential range from 0 to 0.8 V. The tested hydrogel material was electrochemically stable and did not decompose even after 10,000 GCD cycles. Additionally, the EDLC test cell with chitin–EG hydrogel as electrolyte exhibited superior capacitance retention after 10,000 charge/discharge cycles compared with a commercial glass fiber membrane.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| | - Krzysztof Nowacki
- Institute of Chemistry and Applied Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Filip Jaworski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Przemysław Bartczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Piotrowo 3, 61138, Poznan, Poland
| | - Maciej Galiński
- Institute of Chemistry and Applied Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| |
Collapse
|
18
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
19
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J. Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104473. [PMID: 34699648 DOI: 10.1002/adma.202104473] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This review addresses the reconstruction of structural plant components (cellulose, lignin, and hemicelluloses) into materials displaying advanced optical properties. The strategies to isolate the main building blocks are discussed, and the effects of fibrillation, fibril alignment, densification, self-assembly, surface-patterning, and compositing are presented considering their role in engineering optical performance. Then, key elements that enable lignocellulosic to be translated into materials that present optical functionality, such as transparency, haze, reflectance, UV-blocking, luminescence, and structural colors, are described. Mapping the optical landscape that is accessible from lignocellulosics is shown as an essential step toward their utilization in smart devices. Advanced materials built from sustainable resources, including those obtained from industrial or agricultural side streams, demonstrate enormous promise in optoelectronics due to their potentially lower cost, while meeting or even exceeding current demands in performance. The requirements are summarized for the production and application of plant-based optically functional materials in different smart material applications and the review is concluded with a perspective about this active field of knowledge.
Collapse
Affiliation(s)
- Joice Jaqueline Kaschuk
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
| | - Yazan Al Haj
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
- Bioproducts Institute, Departments of Chemical Engineering, Department of Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kati Miettunen
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, FI-20500, Finland
| | - Tiffany Abitbol
- RISE Research Institutes of Sweden, Stockholm, SE-114 28, Sweden
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| |
Collapse
|
21
|
Han T, Noh J, Kim MH, Rho J, Jo H. Pixelated Microsized Quantum Dot Arrays Using Surface-Tension-Induced Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51718-51725. [PMID: 34677928 DOI: 10.1021/acsami.1c14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantum dots (QDs) are semiconducting nanoparticles that exhibit unique fluorescent characteristics when excited by an ultraviolet light source. Owing to their highly saturated emissions, display panels using QDs as pixels have been presented. However, the complications of the nanofabrication procedure limit the industrial application of QDs. This study suggests a method to arrange high-aspect-ratio QD pixels by inducing both Laplace-pressure-driven capillary flow and thermally driven Marangoni flow. The evaporation of colloidal QDs induces a capillary flow that drives the QDs toward the inner tips of V-shaped structures. Additionally, the Marangoni flow arranges the gathered QDs at the tip; thus, they could form a high dune, overcoming the limitations of the existing capillary assembly method using evaporation. Using these phenomena, clover-shaped (assembly of V-shaped edges) templates were made to gather numerous QDs, and the clover with a 30° angle afforded the highest brightness among all the angle structures. Finally, by demonstrating a 100-cm2-sized QD microarray with high uniformity (98.6%), our method shows the feasibility of large-area fabrication, which has extensive application in manufacturing QD displays, anti-counterfeiting labels, and other QD-based optical devices.
Collapse
Affiliation(s)
- Taeyang Han
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaebum Noh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Moo Hwan Kim
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - HangJin Jo
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|