1
|
Wang J, Mao Y, Miljkovic N. Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402190. [PMID: 39119846 PMCID: PMC11481206 DOI: 10.1002/advs.202402190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Passive battery thermal management systems (BTMSs) are critical for mitigation of battery thermal runaway (TR). Phase change materials (PCMs) have shown promise for mitigating transient thermal challenges. Fluid leakage and low effective thermal conductivity limit PCM adoption. Furthermore, the thermal capacitance of PCMs diminishes as their latent load is exhausted, creating an unsustainable cooling effect that is transitory. Here, an expanded graphite/PCM/graphene composite that solves these challenges is proposed. The expanded graphite/PCM phase change composite eliminates leakage and increases effective thermal conductivity while the graphene coating enables radiative cooling for PCM regeneration. The composite demonstrates excellent thermal performance in a real BTMS and shows a 26% decrease in temperature when compared to conventional BTMS materials. The composite exhibits thermal control performance comparable with active cooling, resulting in reduced cost and increased simplicity. In addition to BTMSs, this material is anticipated to have application in a plethora of engineered systems requiring stringent thermal management.
Collapse
Affiliation(s)
- Ji‐Xiang Wang
- Institute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- Hebei Key Laboratory of Man‐machine Environmental Thermal Control Technology and EquipmentHebei Vocational University of Technology and EngineeringHebei054000P. R. China
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SARP. R. China
- College of ElectricalEnergy and Power EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Yufeng Mao
- Institute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Nenad Miljkovic
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of IllinoisUrbanaIL61801USA
- International Institute for Carbon‐Neutral Energy Research (WPI‐I2CNER)Kyushu University744 Motooka, Nishi‐kuFukuoka819‐0395Japan
- Institute for Sustainability, Energy and Environment (iSEE)University of IllinoisUrbanaIL61801USA
| |
Collapse
|
2
|
Xia J, Kong X, Li L, Zhang Z, Chen Y, Li M, Qin Y, Cai T, Dai W, Fang S, Yi J, Lin CT, Nishimura K, Jiang N, Yu J. High Thermal Conductivity and Radiative Cooling Designed Boron Nitride Nanosheets/Silk Fibroin Films for Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7732-7741. [PMID: 38306189 DOI: 10.1021/acsami.3c16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The implementation of passive cooling strategies is crucial for transitioning from the current high-power- and energy-intensive thermal management practices to more environmentally friendly and carbon-neutral alternatives. Among the various approaches, developing thermal management materials with high thermal conductivity and emissivity for effective cooling of personal and wearable devices in both indoor and outdoor settings poses significant challenges. In this study, we successfully fabricated a cooling patch by combining biodegradable silk fibroin with boron nitride nanosheets. This patch exhibits consistent heat dissipation capabilities under different ambient conditions. Leveraging its excellent radiative cooling efficiency (Rsolar = 0.89 and εLWIR = 0.84) and high thermal conductivity (in-plane 27.58 W m-1 K-1 and out-plane 1.77 W m-1 K-1), the cooling patch achieves significant simulated skin temperature reductions of approximately 2.5 and 8.2 °C in outdoor and indoor conditions, respectively. Furthermore, the film demonstrates excellent biosafety and can be recycled and reused for at least three months. This innovative BNNS/SF film holds great potential for advancing the field of personal thermal management materials.
Collapse
Affiliation(s)
- Juncheng Xia
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiangdong Kong
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Linhong Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhenbang Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yapeng Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Qin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Cai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shuangquan Fang
- School of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jian Yi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazuhito Nishimura
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Wang JX, Lai H, Zhong M, Liu X, Chen Y, Yao S. Design and Scalable Fabrication of Liquid Metal and Nano-Sheet Graphene Hybrid Phase Change Materials for Thermal Management. SMALL METHODS 2023; 7:e2300139. [PMID: 37129546 DOI: 10.1002/smtd.202300139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Here, a paraffin/liquid metal (LM)/graphene hybrid thermal composite material with a high thermal-conductivity as well as high latent heat is developed. The paraffin is encapsulated in calcium alginate, which produces leakage-free phase change material (PCM) capsules. LM is filled among the gaps of PCM capsules to enhance overall heat conduction. Graphene nano-sheets coating attains efficient heat dissipation because of its high spectral emissivity (>91%) in the spectrum of the mid-infrared region. The developed material is verified to have strong compatibility and durable stability. The composite is utilized as a thermal buffer (TB) for central processing unit thermal management to demonstrate the synergy of these superior thermal properties. In certain cases, active cooling normally used could be replaced by the developed TB without any energy consumption for thermal management, demonstrating a completely passive cooling strategy. Compared to traditional heat sink active cooling, general energy savings of 10.4-26.3% could thus be achieved by the developed composite in wider operating conditions, proving its potential for more efficient and sustainable data center cooling alongside thermal management of other ground-based electrical/electronic equipment.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Hebei, 054000, P. R. China
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Huang Lai
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, P. R. China
| | - Xiangdong Liu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yongping Chen
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|