1
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Cingöz A, Akpinar Ö, Sayaslan A. Effect of addition of wheat bran hydrolysate on bread properties. J Food Sci 2024; 89:2567-2580. [PMID: 38532713 DOI: 10.1111/1750-3841.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Although the addition of bran to bread makes it healthier and more functional, it brings with it some technological problems. One way to eliminate these problems is hydrothermal pretreatment of wheat bran. In this study, five different ratios (10%, 20%, 30%, 50%, and 100%) of hydrolysates from hydrothermal pretreatment of wheat bran (150°C, 30 min) were substituted with dough-kneading water during dough kneading for bread making. The physical, chemical, functional, textural and important starch fractions of the bread produced were determined. The addition of hydrolysate in different amounts to the dough-kneading water resulted in similar physical properties (height, specific volume, and crust color) as the control bread. While the addition of hydrolysate decreased the hardness of the breads, it positively improved important starch fractions (increasing the amount of slowly digestible starch and decreasing the amount of rapidly digestible starch). It also increased antioxidant capacity (iron (III) reducing antioxidant power, ABTS, and DPPH (2,2-diphenyl-1-picrylhydrazyl) and reduced the starch hydrolysis index of the bread. It was shown that the hydrolysate obtained after the hydrothermal treatment of bran could be used in bread making to satisfy the demand for products preferred by consumers from both health and sensory points of view.
Collapse
Affiliation(s)
- Ali Cingöz
- Department of Food Engineering, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Özlem Akpinar
- Department of Food Engineering, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Abdulvahit Sayaslan
- Department of Food Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
4
|
Huang X, Liu H, Ma Y, Mai S, Li C. Effects of Extrusion on Starch Molecular Degradation, Order-Disorder Structural Transition and Digestibility-A Review. Foods 2022; 11:foods11162538. [PMID: 36010538 PMCID: PMC9407177 DOI: 10.3390/foods11162538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Extrusion is a thermomechanical technology that has been widely used in the production of various starch-based foods and can transform raw materials into edible products with unique nutritional characteristics. Starch digestibility is a crucial nutritional factor that can largely determine the human postprandial glycemic response, and frequent consumption of foods with rapid starch digestibility is related to the occurrence of type 2 diabetes. The extrusion process involves starch degradation and order-disorder structural transition, which could result in large variance in starch digestibility in these foods depending on the raw material properties and processing conditions. It provides opportunities to modify starch digestibility by selecting a desirable combination of raw food materials and extrusion settings. This review firstly introduces the application of extrusion techniques in starch-based food production, while, more importantly, it discusses the effects of extrusion on the alteration of starch structures and consequentially starch digestibility in various foods. This review contains important information to generate a new generation of foods with slow starch digestibility by the extrusion technique.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shihua Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
5
|
Xu X, Bean S, Wu X, Shi YC. Effects of protein digestion on in vitro digestibility of starch in sorghum differing in endosperm hardness and flour particle size. Food Chem 2022; 383:132635. [PMID: 35413766 DOI: 10.1016/j.foodchem.2022.132635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
In vitro digestibility of starch in sorghum grains differing in endosperm hardness and flour particle size was investigated. The starch digestibility increased as the particle size of flour decreased, but no clear trend was observed in digestibility of starch in sorghum flours milled from grains with different hardness. The protein matrix affected the digestion of starch. The pH value (2.0 vs. 1.3) was a critical factor affecting protein digestion. Optimum pH (pH 2.0 for pepsin) digested more protein, resulting in a greater digestion of starch. Resistant starch (RS) content was 8.5-26.3% in isolated sorghum starch but higher (10.6-29.5%) in sorghum flours. Protein digestibility decreased after cooking while starch digestibility increased compared to native sorghum flours; disulfide bonds formed between protein molecules. RS content of cooked sorghum flour was much higher without pepsin treatment (16.93-23.99%) than that of cooked sorghum flour with pepsin treatment (4.86-12.53%).
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Scott Bean
- Grain Quality & Structure Research Unit, Center for Grain and Animal Health Research, USADA-ARS, Manhattan, KS 66502, USA
| | - Xiaorong Wu
- Grain Quality & Structure Research Unit, Center for Grain and Animal Health Research, USADA-ARS, Manhattan, KS 66502, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
6
|
Zou J, Li Y, Su X, Wang F, Li Q, Xia H. Structure and Processing Properties of Nine Yam ( Dioscorea opposita Thunb) Starches from South China: A Comparison Study. Molecules 2022; 27:2254. [PMID: 35408653 PMCID: PMC9000772 DOI: 10.3390/molecules27072254] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In order to explore the processing and application potential of Chinese yam starch, nine kinds of Chinese yam starch (GY11, GY5, GY2, GXPY, LCY, SFY, MPY, SYPY, ASY) from South China were collected and characterized. The chemical composition, rheological properties, thermal properties, and in vitro starch digestion were compared, and the correlation between the structure and processing properties of these yam starches was analyzed using Pearson correlation. The results show that GY2 had the highest amylose content of 28.70%. All the yam starches were similarly elliptical, and all the yam starch gels showed pseudoplastic behavior. Yam starches showed similar pasting temperatures and resistant starch content, but SYPY showed the largest particle size (28.4 μm), SFY showed the highest setback (2712.33 cp), and LCY showed the highest peak viscosity (6145.67 cp) and breakdown (2672.33 cp). In addition, these yam starches also showed different crystal types (A-type, B-type, C-type), relative crystallinity (26.54-31.48%), the ratios of 1045/1022 cm-1 (0.836-1.213), pasting properties, and rheological properties, so the yam starches have different application potentials. The rheological and pasting properties were related to the structural properties of starch, such as DI, Mw, and particle size, and were also closely related to the thermodynamic properties. The appropriate processing methods and purposes of the processed products of these yam starches can be selected according to their characteristics.
Collapse
Affiliation(s)
- Jinhao Zou
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
| | - Xiaojun Su
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
| | - Feng Wang
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
| | - Qingming Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (J.Z.); (Y.L.); (X.S.); (F.W.)
| |
Collapse
|
7
|
Guo L. In vitro amylase hydrolysis of amylopectins from cereal starches based on molecular structure of amylopectins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
|
9
|
Van Hung P, Chau HT, Phi NTL. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents. Food Chem 2015; 191:74-80. [PMID: 26258704 DOI: 10.1016/j.foodchem.2015.02.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/19/2022]
Abstract
The native and physically modified rice starches with varying amylose contents were subjected to investigate the in vitro digestibility and the in vivo glucose tolerance in mice. The amylose and resistant starch (RS) contents of five native rice starches ranged in 4.7-30.6% and 6.3-11.8%, respectively. The RS contents of rice starches increased to 18.5-23.9% after heat-moisture treatment (HMT) and to 19.5-26.9% after annealing treatment (ANN). The heat-moisture and annealing treatments significantly reduced glycemic index (GI) values of the rice starches. GI values of the native, heat-moisture treated and annealed rice starches ranged in 68.9-100, 61.2-88.9 and 21.2-43.9, respectively. There was no correlation between amylose contents and the RS contents or GI values, while a strong negative correlation between RS contents and GI values was found (R(2)=-0.747, P<0.01).
Collapse
Affiliation(s)
- Pham Van Hung
- School of Biotechnology, International University, Vietnam National University in HoChiMinh City, Quarter 6, Linh trung Ward, Thu Duc District, HoChiMinh City, Viet Nam.
| | - Huynh Thi Chau
- Faculty of Biology, University of Science, Vietnam National University in HoChiMinh City, 227 Nguyen Van Cu Street, District 5, HoChiMinh City, Viet Nam
| | - Nguyen Thi Lan Phi
- Faculty of Chemical Engineering, University of Technology, Vietnam National University in HoChiMinh City, 268 Ly Thuong Kiet Street, District 10, HoChiMinh City, Viet Nam
| |
Collapse
|
10
|
In vitro hypoglycemic effects and starch digestibility characteristics of wheat based composite functional flour for diabetics. Journal of Food Science and Technology 2014; 52:4530-6. [PMID: 26139921 DOI: 10.1007/s13197-014-1470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
The associations between chronic feeding of high level of soluble/insoluble fibers and low serum glucose levels have been well documented. In the present study, composite flours were formulated using psyllium, barley and oat at two different levels [WPOB-I = wheat flour (75 %), psyllium (5 %), oat (10 %) and barley (10 %), WPOB-II = wheat flour (60 %), psyllium (10 %), oat (15 %) and barley (15 %)]. Chapaties were prepared from all formulations and various starch fractions were analyzed using controlled enzymatic digestion. The digestibility characteristics were studied using amylolysis kinetics employing porcine pancreatic α-amylase in vitro. Results showed that both the variations (WPOB-I & WPOB-II) had acceptable sensory qualities and had significantly lower (p ≤ 0.05) values for total starch (TS), rapidly digestible starch (RDS), resistant starch (RS), starch digestibility index (SDI) and rapidly available glucose (RAG) compared to control. Between the two variations, WPOB-I showed better starch digestibility characteristics with significantly lower (p ≤ 0.05) starch digestibility index (SDI). In case of amylolysis kinetics, both the variations significantly (p ≤ 0.05) inhibited α-amylase as reflected by lower glucose diffusion and significantly higher (p ≤ 0.05) glucose dialysis retardation index (GDRI) compared to control. It is inferred that, consumption of the composite flours might be helpful in establishing stable blood glucose pattern due to the redistribution of nutritionally important starch fractions and inhibition of carbohydrate digestion in the gastrointestinal tract.
Collapse
|
11
|
Characterisation of a novel softened rice product. Food Chem 2014; 145:372-7. [DOI: 10.1016/j.foodchem.2013.08.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/17/2022]
|
12
|
|
13
|
Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, Mohan V. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 69:1-39. [PMID: 23522794 DOI: 10.1016/b978-0-12-410540-9.00001-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Finger millet or ragi is one of the ancient millets in India (2300 BC), and this review focuses on its antiquity, consumption, nutrient composition, processing, and health benefits. Of all the cereals and millets, finger millet has the highest amount of calcium (344mg%) and potassium (408mg%). It has higher dietary fiber, minerals, and sulfur containing amino acids compared to white rice, the current major staple in India. Despite finger millet's rich nutrient profile, recent studies indicate lower consumption of millets in general by urban Indians. Finger millet is processed by milling, malting, fermentation, popping, and decortication. Noodles, vermicilli, pasta, Indian sweet (halwa) mixes, papads, soups, and bakery products from finger millet are also emerging. In vitro and in vivo (animal) studies indicated the blood glucose lowering, cholesterol lowering, antiulcerative, wound healing properties, etc., of finger millet. However, appropriate intervention or randomized clinical trials are lacking on these health effects. Glycemic index (GI) studies on finger millet preparations indicate low to high values, but most of the studies were conducted with outdated methodology. Hence, appropriate GI testing of finger millet preparations and short- and long-term human intervention trials may be helpful to establish evidence-based health benefits.
Collapse
Affiliation(s)
- S Shobana
- Madras Diabetes Research Foundation, Gopalapuram, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jang HL, Im HJ, Lee YJ, Kim KW, Yoon KY. A Survey on the Preferences and Recognition of Multigrain Rice by Adding Grains and Legumes. ACTA ACUST UNITED AC 2012. [DOI: 10.3746/jkfn.2012.41.6.853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Burton PM, Monro JA, Alvarez L, Gallagher E. Glycemic impact and health: new horizons in white bread formulations. Crit Rev Food Sci Nutr 2012; 51:965-82. [PMID: 21955095 DOI: 10.1080/10408398.2010.491584] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The challenge of provision of a much wider range of foods of relatively low glycemic response than is currently available, especially in terms of cereal products, has been highlighted in recent years and this has particular relevance to bread consumption. Although there has been some transition to brown bread consumption, white bread remains a firm feature in the typical average western diet. This review first outlines the relationship between the glycemic impact of foods and health. What is important is that relatively small differences in glycemic potency of regularly consumed starch foods have been shown to have beneficial effects on health outcomes. Second, factors affecting glycemic response with particular application to white bread formulations are discussed. Novel ways of reformulating this highly favored carbohydrate staple, by using composite flours, with the aim of developing products of reduced glycemic response are highlighted in this review. Importantly, a new and significant focus on the role of unavailable carbohydrate in glycemic improvement is emerging. This has important application in increasing accessibility to health benefits by contributing to the prevention of and management of glucose intolerance, insulin resistance, and associated chronic disease to a wider range of consumers.
Collapse
Affiliation(s)
- Pat M Burton
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin, ROI.
| | | | | | | |
Collapse
|
16
|
Altan A, McCarthy KL, Maskan M. Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley-based extrudates from fruit and vegetable by-products. J Food Sci 2009; 74:E77-86. [PMID: 19323745 DOI: 10.1111/j.1750-3841.2009.01051.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Barley flour and barley flour-pomace (tomato, grape) blends were extruded through a co-rotating twin-screw extruder. The aim of the present study was to investigate the effects of die temperature, screw speed, and pomace level on water absorption index (WAI), water solubility index (WSI), degree of starch gelatinization, and in vitro starch digestibility using a response surface methodology. The selected extrudate samples were examined further using differential scanning calorimetry (DSC) and polarized light microscopy, respectively. The WAI of barley-pomace extrudates was affected by increasing pomace level. Temperature had significant effect on all types of extrudate but screw speed had significant linear effect only on barley and barley-grape pomace extrudates on degree of starch gelatinization. Although no gelatinization peak was detected, an endotherm was observed on all selected extrudates. In general, extrusion cooking significantly increased in vitro starch digestibility of extrudates. However, increasing level of both tomato and grape pomace led to reduction in starch digestibility.
Collapse
Affiliation(s)
- A Altan
- Dept of Food Engineering, Univ of Gaziantep, Gaziantep, Turkey
| | | | | |
Collapse
|
17
|
Han SH, Lee SW, Rhee C. Effects of cooking methods on starch hydrolysis kinetics and digestion-resistant fractions of rice and soybean. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0846-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Roopa S, Premavalli K. Effect of processing on starch fractions in different varieties of finger millet. Food Chem 2008. [DOI: 10.1016/j.foodchem.2006.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Physicochemical properties and nutritional quality of raw cereals for newly weaned piglets. Animal 2008; 2:867-78. [DOI: 10.1017/s1751731108001936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
He J, Liu J, Zhang G. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: glycemic response and mechanism. Biomacromolecules 2007; 9:175-84. [PMID: 18067261 DOI: 10.1021/bm700951s] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism and molecular structure of the slowly digestible waxy maize starch prepared by octenyl succinic anhydride (OSA) esterification and heat-moisture treatment were investigated. The in vitro Englyst test showed a proportion of 28.3% slowly digestible starch (SDS) when waxy maize starch was esterified with 3% OSA (starch weight based, and it is named OSA-starch), and a highest SDS content of 42.8% was obtained after OSA-starch (10% moisture) was further heated at 120 degrees C for 4 h (named HOSA-starch). The in vivo glycemic response of HOSA-starch, which showed a delayed appearance of blood glucose peak and a significant reduction (32.2%) of the peak glucose concentration, further confirmed its slow digestion property. Amylopectin debranching analysis revealed HOSA-starch had the highest resistance to debranching enzymes of isoamylase and pullulanase, and a simultaneous decrease of K m and V m (enzyme kinetics) was also shown when HOSA-starch was digested by either alpha-amylase or amyloglucosidase, indicating that the slow digestion of HOSA-starch resulted from an uncompetitive inhibition of enzyme activity during digestion. Size exclusion chromatography analysis of HOSA-starch showed fragmented amylopectin molecules with more nonreducing ends that are favorable for RS conversion to SDS by the action of amyloglucosidase in the Englyst test. Further solubility analysis indicates that the water-insolubility of HOSA-starch is caused by OSA-mediated cross-linking of amylopectin and the hydrophobic interaction between OSA-modified starch molecules. The water-insolubility of HOSA-starch would decrease its enzyme accessibility, and the digestion products with attached OSA molecules might also directly act as the uncompetitive inhibitor to reduce the enzyme activity leading to a slow digestion of HOSA-starch.
Collapse
Affiliation(s)
- Jinhua He
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Southern Yangtze University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
21
|
Shin SI, Lee CJ, Kim DI, Lee HA, Cheong JJ, Chung KM, Baik MY, Park CS, Kim CH, Moon TW. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2006.05.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Han SH, Chung MJ, Lee SJ, Rhee C. Digestion-resistant fraction from soybean [Glycine max (L.) Merrill] induces hepatic LDL receptor and CYP7A1 expression in apolipoprotein E-deficient mice. J Nutr Biochem 2006; 17:682-8. [PMID: 16517141 DOI: 10.1016/j.jnutbio.2005.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/31/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Soybean [Glycine max (L.) Merrill] is known to have hypocholesterolemic effects; however, the function and mechanism of its digestion-resistant fraction (RF) in cholesterol reduction is not clearly understood. In the present study, we investigated the hypocholesterolemic effects of the RF from soybean in C57BL/6J and apolipoprotein E (apoE)-deficient mice. RFs were prepared either from raw or preheated crops to measure compositional changes in RF during cooking. Preheating reduced the RF yields and the resistant starch (RS) fraction in RF. After 1 week of feeding, the raw soybean RF (5%, w/w) was the most effective in lowering plasma cholesterol concentrations by 27% (P<.05) in apoE-deficient (apoE-/-) mice. A smaller but significant reduction was found in C57BL/6J mice. The RF from preheated soybean tended to have lower hypocholesterolemic effects than did the RF from raw soybean in apoE-/- mice. This suggests the RS may be a key hypocholesterolemic component from soybean RF. RF consumption (5%, w/w) dramatically increased hepatic low-density lipoprotein receptor and cholesterol 7alpha-hydroxylase expression in both apoE-/- and C57BL/6J mice followed by increased bile acid excretion. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase was only marginally altered. Our results show that the RF, especially from raw soybean containing high level of RS, significantly reduces plasma cholesterol concentrations under hyperlipidemic condition. The cholesterol was reduced by multiple mechanisms such as increased hepatic cholesterol uptake, cholesterol degradation into bile acids and bile acid excretion.
Collapse
Affiliation(s)
- Sung-Hee Han
- Department of Agricultural Chemistry, College of Life and Environmental Sciences, Korea University, Seoul 136-701, South Korea
| | | | | | | |
Collapse
|