1
|
Li C, Chen G, Tilley M, Chen R, Perez-Fajardo M, Wu X, Li Y. Enhancing Gluten Network Formation and Bread-Making Performance of Wheat Flour Using Wheat Bran Aqueous Extract. Foods 2024; 13:1479. [PMID: 38790779 PMCID: PMC11119270 DOI: 10.3390/foods13101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Wheat bran possesses diverse nutritional and functional properties. In this study, wheat bran aqueous extract (WBE) was produced and thoroughly characterized as a functional ingredient and improver for bakery application. The WBE contained 50.3% total carbohydrate, 24.5% protein, 13.0% ash, 6.7% soluble fiber, 2.9% insoluble fiber, and 0.5% β-glucan. Notably, adding 7.5% WBE significantly increased the bread-specific volume to 4.84 cm3/g, compared with the control of 4.18 cm3/g. Adding WBE also resulted in a remarkable improvement in dough properties. The WBE-enriched dough showed increased peak, setback, breakdown, and final viscosities, along with higher storage and loss modulus. Scanning electron microscopy analysis further revealed that the WBE promoted the aggregation of protein and starch within the dough. The extractable gliadin to glutenin ratio increased with 5 and 7.5% WBE additions, compared with the control and 2.5% WBE addition. WBE did not significantly alter the starch gelatinization temperature or dough extension properties. These findings demonstrate that the inclusion of WBE in wheat flour is a promising approach for producing high-quality bread that is enriched with dietary fiber and protein.
Collapse
Affiliation(s)
- Cheng Li
- Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Gengjun Chen
- Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Tilley
- Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| | - Richard Chen
- Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| | - Mayra Perez-Fajardo
- Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| | - Xiaorong Wu
- Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| | - Yonghui Li
- Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Dhua S, Mishra P. Development of highly reusable, mechanically stablecorn starch-based aerogel using glycerol for potential application in the storage of fresh spinach leaves. Int J Biol Macromol 2023:125102. [PMID: 37245761 DOI: 10.1016/j.ijbiomac.2023.125102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Impact of glycerol on the physico-functional, morphological, mechanical, and rehydration properties ofcorn starch-based aerogel has been investigated. The aerogel was prepared from hydrogel (sol-gel method) using solvent exchange and supercritical CO2 drying. Glycerol-infused aerogel had a more connected, denser structure (0.38-0.45 g/cm3), enhanced hygroscopic behavior, and was reusable up to eight times in terms of its capacity to absorb water after being drawn from the soaked sample. However, the inclusion of glycerol reduced the aerogel's porosity (75.89-69.91 %) and water absorption rate (WAR; 118.53-84.64 %) but enhanced its percentage shrinkage (75.03-77.99 %) and compressive strength (26.01-295.06 N). The most effective models for describing the rehydration behavior of aerogel were determined to be the Page, Weibull, and Modified Peleg models. Glycerol addition improved the internal strength of the aerogel so could be recycled without significant change in the physical characteristics of the aerogel. By effectively eliminating the condensed moisture that was developed inside the packing owing to the transpiration of fresh spinach leaves, the aerogel extended the storage life of the leaves by up to eight days. The glycerol-based aerogel has the potential to be employed as a carrier matrix for various chemicals and a moisture scavenger.
Collapse
Affiliation(s)
- Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
3
|
Li R, Ding L, Guo K, Qu J, Herburger K, Persson S, Blennow A, Zhong Y. The effects of different types of high-amylose maize starches on viscosity and digestion of acidified milk gels. Food Chem 2023; 404:134525. [DOI: 10.1016/j.foodchem.2022.134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
4
|
High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr Polym 2023; 299:120185. [PMID: 36876800 DOI: 10.1016/j.carbpol.2022.120185] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
High-amylose maize refers to a special type of maize cultivar with a 50 %-90 % amylose content of the total starch. High-amylose maize starch (HAMS) is of interest because it possesses unique functionalities and provides many health benefits for humans. Therefore, many high-amylose maize varieties have been developed via mutation or transgenic breeding approaches. From the literature reviewed, the fine structure of HAMS is different from the waxy and normal corn starches, influencing its gelatinization, retrogradation, solubility, swelling power, freeze-thaw stability, transparency, pasting and rheological properties, and even in vitro digestion. HAMS has undergone physical, chemical, and enzymatical modifications to enhance its characteristics and thereby broaden its possible uses. HAMS has also been used for the benefit of increasing resistant starch levels in food products. This review summarizes the recent developments in our understanding of the extraction and chemical composition, structure, physicochemical properties, digestibility, modifications, and industrial applications of HAMS.
Collapse
|
5
|
Garske RP, Mercali GD, Thys RCS, Cladera-Olivera F. Cassava starch and chickpea flour pre-treated by microwave as a substitute for gluten-free bread additives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:53-63. [PMID: 36618054 PMCID: PMC9813335 DOI: 10.1007/s13197-022-05586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 02/06/2023]
Abstract
There is an increasing demand for gluten-free products, which are regularly made by a combination of ingredients and additives. Microwave pre-treatment of gluten-free ingredients is an alternative to food additives because it may induce changes in protein and starch functional properties. In this context, this study aimed to apply microwave treatment in cassava starch and chickpea flour, analyzing their functional and thermal properties and their ability to substitute additives in gluten-free breads, comparing them to an additive-containing bread. All formulations were analyzed regarding their physical characteristics and quality parameters. The microwave-treated ingredients showed color, thermal properties and morphology changes. The bread made with chickpea flour treated with initial moisture of 40% showed the best quality parameters when compared to the control bread. The ingredients pre-treated with microwave have shown efficiency on gluten-free bakery additives substitution, allowing the use of a clean label terminology.
Collapse
Affiliation(s)
- Raquel Pischke Garske
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Florencia Cladera-Olivera
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| |
Collapse
|
6
|
Wang X, Jin Y, Cheng L, Li Z, Li C, Ban X, Gu Z, Hong Y. Pasting properties and multi-scale structures of Spirodela starch and its comparison with normal corn and rice starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Yan W, Zhang M, Zhang M, Yadav MP, Jia X, Yin L. Effect of wheat bran arabinoxylan on the gelatinization and long-term retrogradation behavior of wheat starch. Carbohydr Polym 2022; 291:119581. [DOI: 10.1016/j.carbpol.2022.119581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
8
|
|
9
|
Fabrication of Porous Spherical Beads from Corn Starch by Using a 3D Food Printing System. Foods 2022; 11:foods11070913. [PMID: 35407000 PMCID: PMC8997773 DOI: 10.3390/foods11070913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study introduces a 3D food printing approach to fabricate spherical starch beads with small sizes and high porosity for the first time. The results illustrated that 3D food printing could generate starch beads in different sizes depending on the nozzle diameter, printing pressure, and ink viscosity. The 3D-printed beads were characterized for their morphology, crystallinity, and textural properties, while the starch-based ink was analyzed for its rheological properties. A suitable printing was attained when viscosity was in the range of 1000–1200 Pa.s at a low shear rate (˂0.1 s−1). Among the starch concentrations (10–15%, w/w) investigated, 15% starch concentration provided the best control over the shape of the beads due to its high storage modulus (8947 Pa), indicating higher gel strength. At this condition, the starch beads revealed an average size of ~650 µm, which was significantly smaller than the beads produced with other starch concentrations (10 and 12.5%), and had a density of 0.23 g/cm3. However, at lower starch concentrations (10%), the beads were not able to retain their spherical shape, resulting in larger beads (812–3501 µm). Starch crystallinity decreased by gelatinization, and the starch beads exhibited a porous structure, as observed from their SEM images. Overall, 3D food printing can be an alternative approach to preparing porous beads for the delivery of bioactive compounds with high precision.
Collapse
|
10
|
Zhong Y, Qu J, Li Z, Tian Y, Zhu F, Blennow A, Liu X. Rice starch multi-level structure and functional relationships. Carbohydr Polym 2022; 275:118777. [PMID: 34742453 DOI: 10.1016/j.carbpol.2021.118777] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023]
Abstract
Starch from 15 different rice genotypes with amylose content (AC) ranging 1.5%-30.6% were investigated for relationships between structures and properties. For parameters related to the granular level, the most important relationships were found for AC, average chain lengths (ACL) of the amylopectin (AP) fb1 chains having a length of DP 13-24, crystallinity, and the thickness of the crystalline (dc) and the amorphous lamellae (da) of the starch granule. AC and dc were negatively correlated with the peak gelatinization temperature (Tp), thermal enthalpy (ΔH), and peak viscosity (PV), but positively correlated with swelling power. ACLfb1 and da, as compared to AC and dc, had the opposite effects on these parameters, demonstrating important roles of specific molecular and lamellar structures on the starch granular stability. For the gelatinized systems, increasing ACLfb1 decreased retrogradation, while AC increased retrogradation by increasing the resistant starch (RS) content, storage modulus (G'), and setback (SB).
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhihang Li
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yu Tian
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
11
|
Lima EMB, Middea A, Neumann R, Thiré RMDSM, Pereira JF, Freitas SC, Penteado MS, Lima AM, Minguita APDS, Mattos MDC, Teixeira ADS, Pereira ICS, Rojas dos Santos NR, Marconcini JM, Oliveira RN, Corrêa AC. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. STARCH-STARKE 2021. [DOI: 10.1002/star.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Edla Maria Bezerra Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Antonieta Middea
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Reiner Neumann
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering (PEMM)/COPPE Federal University of Rio de Janeiro (UFRJ) Technology Center, Ilha do Fundão Rio de Janeiro Rio de Janeiro 21941‐598 Brazil
| | - Jéssica Fernandes Pereira
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Sidinea Cordeiro Freitas
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Marília Stephan Penteado
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Aline Muniz Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | - Mariana da Costa Mattos
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | | | | | - José Manoel Marconcini
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
| | - Renata Nunes Oliveira
- Post Graduation Program of Chemical Engineering Chemical Engineering Department Federal Rural University of Rio de Janeiro Rod. BR 465, Km 07, s/n – Zona Rural Seropédica Rio de Janeiro 23890‐000 Brazil
| | - Ana Carolina Corrêa
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
- Graduate Program in Materials Science and Engineering Federal University of Sao Carlos (UFSCar) Rod. Washington Luiz, km 235 São Carlos São Paulo 13565‐905 Brazil
| |
Collapse
|
12
|
Lemos PVF, Opretzka LCF, Almeida LS, Cardoso LG, Silva JBAD, Souza COD, Villarreal CF, Druzian JI. Preparation and characterization of C-phycocyanin coated with STMP/STPP cross-linked starches from different botanical sources. Int J Biol Macromol 2020; 159:739-750. [DOI: 10.1016/j.ijbiomac.2020.05.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
|
13
|
Mapengo CR, Emmambux MN. Functional properties of heat-moisture treated maize meal with added stearic acid by infrared energy. Food Chem 2020; 325:126846. [PMID: 32387987 DOI: 10.1016/j.foodchem.2020.126846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022]
Abstract
Functional properties of infrared heat-moisture treated (HMT) maize meal with stearic acid were studied. Maize meal with 1.5% stearic acid (SA) was treated by HMT using infrared (IR) energy (at 110 °C for 1, 2 & 3 h) and conventional HMT (at 110 °C for 16 h) independently. Infrared HMT is similar to conventional HMT since both treatments resulted in significantly (P < 0.05) reduced final viscosity and reduced in vitro starch digestibility in maize meal with stearic acid. These changes related correspond with the presence of V-type polymorphs (Type II) and increased in relative crystallinity showed by differential scanning calorimetry and X-ray diffraction scattering, respectively. These results suggested that infrared HMT changes the functional and nutritional properties of maize meal with SA and has the potential to replace conventional HMT in the development of lower GI, higher value-added functional starch foodstuffs.
Collapse
Affiliation(s)
- Clarity R Mapengo
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - M Naushad Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|
14
|
Zhang Y, Li M, You X, Fang F, Li B. Impacts of guar and xanthan gums on pasting and gel properties of high-amylose corn starches. Int J Biol Macromol 2020; 146:1060-1068. [DOI: 10.1016/j.ijbiomac.2019.09.231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
|
15
|
Physicochemical Properties of Starches in Proso (Non-Waxy and Waxy) and Foxtail Millets (Non-Waxy and Waxy). Molecules 2019; 24:molecules24091743. [PMID: 31060302 PMCID: PMC6539057 DOI: 10.3390/molecules24091743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/03/2022] Open
Abstract
Proso and foxtail millets are widely cultivated due to their excellent resistance to biotic and abiotic stresses and high nutritional value. Starch is the most important component of millet kernels. Starches with different amylose contents have different physicochemical properties. In this study, starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy) were isolated and investigated. All the starch granules had regular polygonal round shapes and exhibited typical “Maltese crosses”. These four starches all showed bimodal size distribution. The waxy proso and foxtail millets had higher weight-average molar mass and branching degree and lower average chain length of amylopectin. These four starches all presented A-type crystallinity; however, the relative crystallinity of waxy proso and foxtail millets was higher. The two waxy millets had higher onset temperature, peak temperature, conclusion temperature, and gelatinization enthalpy. However, the two non-waxy millets had higher setback viscosity, peak time, and pasting temperature. The significantly different physicochemical properties of waxy and non-waxy millet starches resulted in their different functional properties.
Collapse
|
16
|
Pizzoli APDO, Yamashita F, Gonçalves OH, Shirai MA, Leimann FV. The effect of gelatin amount on the properties of PLA/TPS/gelatin extruded sheets. POLIMEROS 2017. [DOI: 10.1590/0104-1428.2181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Genkina NK, Kiseleva VI, Martirosyan VV. Different types of V amylose–lipid inclusion complexes in maize extrudates revealed by DSC analysis. STARCH-STARKE 2015. [DOI: 10.1002/star.201500012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natalia K. Genkina
- Food DepartmentEmanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS)MoscowRussia
| | - Valentina I. Kiseleva
- Food DepartmentEmanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS)MoscowRussia
| | | |
Collapse
|