1
|
Xu Q, Zheng F, Yang P, Tu P, Xing Y, Zhang P, Liu H, Liu X, Bi X. Effect of autoclave-cooling cycles combined pullulanase on the physicochemical and structural properties of resistant starch from black Tartary buckwheat. J Food Sci 2023; 88:315-327. [PMID: 36510380 DOI: 10.1111/1750-3841.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and structural properties of black Tartary buckwheat type 3 resistant starch (BRS) was evaluated. The autoclaving-cooling cycles enhanced solubility and reduced swelling, with the BRS content increasing from 14.12% to 25.18%. The high crystallinity of the BRS reflected a high molecular order. However, increasing the number of autoclaving-cooling cycles did not result in higher BRS content. The highest BRS yield in the autoclaved starch samples was 25.18% after double-autoclaving-cooling cycles. Furthermore, the autoclaving-cooling cycles altered the crystalline structure of black Tartary buckwheat, and the subsequent crystallinity changed from 36.33% to 42.05% to 38.27%. Fourier-transform infrared spectroscopy shows that the number of cycles results in more efficient double-helical packing within the crystalline lamella. Principal component analysis showed that the autoclaving-cooling cycle treatment leads to significant changes in the molecular structure of resistant starch (RS). These results indicated that autoclaving-cooling cycles might be a feasible way for producing RS from black Tartary buckwheat starch with better structural stability to expand their application range.
Collapse
Affiliation(s)
- Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Yang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Tu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Zhang
- Huantai Biotechnology Co., Ltd., Chengdu, China
| | - Hong Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiufang Bi
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
2
|
Liu Y, Jiang F, Du C, Li M, Leng Z, Yu X, Du SK. Optimization of Corn Resistant Starch Preparation by Dual Enzymatic Modification Using Response Surface Methodology and Its Physicochemical Characterization. Foods 2022; 11:2223. [PMID: 35892808 PMCID: PMC9331437 DOI: 10.3390/foods11152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022] Open
Abstract
Corn starch was dually modified using thermostable α-amylase and pullulanase to prepare resistant starch (RS). The concentration of starch liquid, the amount of added thermostable α-amylase, the duration of enzymatic hydrolysis and the amount of added pullulanase were optimized using RSM to increase RS content of the treated sample. The optimum pretreatment conditions were 15% starch liquid, 3 U/g thermostable α-amylase, 35 min of enzymatic hydrolysis and 8 U/g pullulanase. The maximum RS content of 10.75% was obtained, and this value was significantly higher than that of native corn starch. The degree of polymerization (DP) of the enzyme-modified starch decreased compared with that of native starch. The scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were performed to assess structural changes in native and pretreated starch. The effect of dual enzyme pretreatment on the structure and properties of corn starch was significant. Unlike the untreated one, the pretreated corn starch showed clear pores and cracks. Significant differences in RS contents and structural characterization between starch pretreated and untreated with dual enzymes demonstrated that the dual enzyme modification of corn was effective in enhancing RS contents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang-Kui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China; (Y.L.); (F.J.); (C.D.); (M.L.); (Z.L.); (X.Y.)
| |
Collapse
|
3
|
Li C, Kong H, Yang Q, Gu Z, Ban X, Cheng L, Hong Y, Li Z. A temperature-mediated two-step saccharification process enhances maltose yield from high-concentration maltodextrin solutions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3742-3748. [PMID: 33301206 DOI: 10.1002/jsfa.11005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Designing a high-concentration (50%, w/w) maltodextrin saccharification process is a green method to increase the productivity of maltose syrup. RESULTS In this study, a temperature-mediated two-step process using β-amylase and pullulanase was investigated as a strategy to improve the efficiency of saccharification. During the saccharification process, both pullulanase addition time and temperature adjustment greatly impacted the final maltose yield. These results indicated that an appropriate β-amylolysis in the first stage (the first 8 h) was required to facilitate saccharification process, with the maltose yield of 8.46% greater than that of the single step saccharification. Molecular structure analysis further demonstrated that a relatively low temperature (50 °C), as compared with a normal temperature (60 °C), in the first stage resulted in a greater number of chains polymerized by at least seven glucose units and a less heterogeneity system within the residual substrate. The molecular structure of the residual substrate might be beneficial for the subsequent cooperation between β-amylase and pullulanase in the following 40 h (second stage). CONCLUSION Over a 48 h saccharification, the temperature-mediated two-step process dramatically increased the conversion rate of maltodextrin and yielded significantly more maltose and less byproduct, as compared with a constant-temperature process. The two-step saccharification process therefore offered an efficient and green strategy for maltose syrup production in industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qianwen Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
4
|
Ren J, Dang KM, Pollet E, Avérous L. Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content. Polymers (Basel) 2018; 10:polym10080808. [PMID: 30960733 PMCID: PMC6403770 DOI: 10.3390/polym10080808] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022] Open
Abstract
Nano-biocomposites based on halloysite nanoclay and potato starch were elaborated by melt blending with different polyol plasticizers such as glycerol, sorbitol or a mixture of both. The effects of the type of plasticizer and clay content on potato starch/halloysite nano-biocomposites were studied. SEM analyses combined with ATR-FTIR results showed that a high content of sorbitol had a negative effect on the dispersion of the halloysite nanoclay in the starchy matrix. XRD results demonstrated that incorporation of halloysite nanoclay into glycerol-plasticized starch systems clearly led to the formation of a new crystalline structure. The addition of halloysite nanoclay improved the thermal stability and decreased the moisture absorption of the nano-biocomposites, whatever the type of plasticizer used. Halloysite addition led to more pronounced improvement in mechanical properties for glycerol plasticized system compared to nanocomposites based on sorbitol and glycerol/sorbitol systems with a 47% increase in tensile strength for glycerol-plasticized starch compared to 10.5% and 11% for sorbitol and glycerol/sorbitol systems, respectively. The use of a mixture of polyols was found to be a promising way to optimize the mechanical properties of these starch-based nanocomposites.
Collapse
Affiliation(s)
- Jiawei Ren
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Khanh Minh Dang
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| |
Collapse
|
5
|
Ren J, Han L, Cai H, Wu K, Avérous L, Guo W. Functional Biocomposites Based on Plasticized Starch/halloysite Nanotubes for Drug-Release Applications. STARCH-STARKE 2018. [DOI: 10.1002/star.201700358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiawei Ren
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Lei Han
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Haifeng Cai
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Kai Wu
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Luc Avérous
- Bioteam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2; France
| | - Weihong Guo
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
6
|
Ren J, Zhang W, Lou F, Wang Y, Guo W. Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. STARCH-STARKE 2016. [DOI: 10.1002/star.201600161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiawei Ren
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Weijian Zhang
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Feipeng Lou
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Yuming Wang
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Weihong Guo
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering; East China University of Science and Technology; Shanghai P. R. China
- Anhui Collaborative Innovation Center for Petrochemical New Materials; Anqing P. R. China
| |
Collapse
|