1
|
Xing X, Song Y, Yang Y, Tang N, Pan L, Wang Y, Chen Q, Gao H, Ni K, Sun Y, Shen L, Shen W, Ding J, Yang Y. The structural properties of "Huilou" yam starch fermented with five microbial species. Int J Biol Macromol 2024; 280:135955. [PMID: 39322149 DOI: 10.1016/j.ijbiomac.2024.135955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
In this study, we employed two lactic acid bacterial species, two yeast species, and Bacillus amyloliquefaciens to ferment "Huilou" yam starch. The aim was to explore the effects of fermentation time and microbial species on the structural properties of yam starch. The results showed that fermentation caused an increase in relative crystallinity (29.23 %-37.98 %) compared with native starch (25.69 %). The fermentation process altered the thermal properties of yam starch, leading to higher enthalpy of gelatinization values compared with unfermented starch. Notably, an absorption peak of native starch shifted from 992 cm-1 to 1015 cm-1 upon 2-day fermentation by Bacillus amyloliquefaciens and 5-day fermentation by Lactobacillus plantarum or Pediococcus pentococcus, associated with an increase in the presence of amorphous structures in yam starch. "Huilou" yam starch obtained through lactic acid bacterial fermentation exhibited a significant presence of organic acids, whereas samples derived from Bacillus amyloliquefaciens fermentation were primarily affected by amylase activity. Following yeast fermentation, organic acids and amylase were observed, albeit with relatively low influence. This research reveals that microbial fermentation can potentially alter the structural characteristics of yam starch, which can improve the quality of yam starch-based foods.
Collapse
Affiliation(s)
- Xiaolong Xing
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Yang Song
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Postdoctoral Station of Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ning Tang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Yuhong Wang
- Department of Food Engineering, Henan Vocational College of Agriculture, Zhengzhou 451450, China
| | - Qingbin Chen
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Kexin Ni
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Yang Sun
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Lixia Shen
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Weijie Shen
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Jiongyi Ding
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Yang Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
2
|
Yang Q, Lyu Y, Wu Z, Li X, Liu K. Effect of Sourdough-Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter. Foods 2024; 13:2730. [PMID: 39272496 PMCID: PMC11395332 DOI: 10.3390/foods13172730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fagao is one of China's traditional gluten-free staple foods made with rice or corn flour. Corn Fagao prepared by co-fermentation with sourdough and yeast exhibits better quality and less staling compared to traditional yeast-fermented Fagao. The physicochemical properties of corn Fagao batter during sourdough-yeast co-fermentation were investigated. The results showed that compared with yeast fermentation, the gas production and viscosity of the batter increased with co-fermentation. The co-fermented batter showed a higher hydrolysis of starch and less amylose content. The integrity of starch granules in the co-fermented batter was damaged more seriously, and the crystallinity and short-range ordered structure were less than in the yeast-fermented batter, even though the crystal structure type of starch did not obviously change. The peak viscosity, minimum viscosity, final viscosity, decay value, and recovery value of the corn batter were reduced by co-fermentation, which improved the thermal stability of the batter and slowed down the aging. Co-fermentation also resulted in a more pronounced reduction in protein subunit content than yeast fermentation. The changes in the physicochemical properties of the corn Fagao batter help explain the improvement in quality of corn Fagao made from the co-fermentation method and may provide theoretical references for co-fermentation with sourdough and yeast to other gluten-free foods.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingguo Lyu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China
| | - Zhenhua Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zhao G, Liu C, Li L, Li J, Wang J, Fan X, Zheng X. Structural characteristics and paste properties of wheat starch in natural fermentation during traditional Chinese Mianpi processing. Int J Biol Macromol 2024; 262:129993. [PMID: 38325684 DOI: 10.1016/j.ijbiomac.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/09/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Fermentation plays a crucial role in traditional Chinese mianpi processing, where short-term natural fermentation (within 24 h) is considered advantageous for mianpi production. However, the influence of short-term natural fermentation on the properties of wheat starch is not explored yet. Hence, structural characteristics and paste properties of wheat starch during natural fermentation were investigated in this study. The findings revealed that fermenting for 24 h had a slight effect on the morphology of wheat starch but significantly decreased the particle size of starch. Compared to native wheat starch, the enzyme activity produced during fermentation may destroy the integrity of starch granules, resulting in a lower molecular weight but higher relative crystallinity and orderliness of starch. After 24 h of natural fermentation, higher solubility and swelling power were obtained compared to non-fermentation. Regarding paste properties, fermented starches exhibited higher peak viscosity and breakdown, along with lower final viscosity, tough viscosity, and setback. Furthermore, the hardness, gel strength, G', and G" decreased after fermentation. Clarifying changes in starch during the short-term natural fermentation process could provide theoretical guidance for improving the quality and production of short-term naturally fermented foods such as mianpi, as discussed in this study.
Collapse
Affiliation(s)
- Guiting Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiasheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangqi Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Dou X, Ren X, Zheng Q, He Y, Lv M, Liu L, Yang P, Hao Y, Chen F, Tang X. Effects of Lactic Acid Bacteria Fermentation on the Physicochemical Properties of Rice Flour and Rice Starch and on the Anti-Staling of Rice Bread. Foods 2023; 12:3818. [PMID: 37893711 PMCID: PMC10606926 DOI: 10.3390/foods12203818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, Lactococcus lactis lactis subspecies 1.2472, Streptococcus thermophilus 1.2718, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 were used to ferment rice flour for preparing rice bread. The characteristics of fermented rice bread were studied to elucidate the mechanism by which fermentation improves the anti-staling ability of rice bread. The amylose content of rice flour increased after fermentation. The peak viscosity, attenuation value, final viscosity, recovery value, and gelatinization temperature decreased. Amylopectin was partially hydrolyzed, and the amylose content decreased. The crystallinity of starch decreased, and the minimum crystallinity of Lactococcus lactis subsp. lactis fermented rice starch (LRS) was 11.64%. The thermal characteristics of fermented rice starch, including To, Tp, Tc, and ΔH, were lower than RS (rice starch), and the △H of LRS was the lowest. Meanwhile, LRS exhibited the best anti-staling ability, and with a staling degree of 43.22%. The T22 of the LRF rice flour dough was lower, and its moisture fluidity was the weakest, indicating that moisture was more closely combined with other components. The texture characteristics of fermented rice bread were improved; among these, LRF was the best: the hardness change value was 1.421 times, the elasticity decrease was 2.35%, and the chewability change was 47.07%. There, it provides a theoretical basis for improving the shelf life of bread.
Collapse
Affiliation(s)
- Xinlai Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Xuyang Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Qiumei Zheng
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Yinyuan He
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Ping Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Yanlin Hao
- Institute of Nutrition and Health, China Agricultural Universities, Beijing 100083, China;
| | - Fenglian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; (X.D.); (X.R.); (Q.Z.); (Y.H.); (M.L.); (L.L.); (P.Y.)
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
6
|
Altan A, Yağci S. Physicochemical characteristics and structural changes of fermented faba bean extrudates prepared by twin-screw extrusion. Food Chem 2023; 411:135502. [PMID: 36682171 DOI: 10.1016/j.foodchem.2023.135502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
In this study, fermented faba bean blends with different locust bean gum (LBG) contents were processed in a co-rotating twin-screw extruder. The effects of extrusion process variables and the LBG level on physicochemical, sensory and structural characteristics of expanded extrudates were investigated. The results showed that physical characteristics of extrudates including expansion, apparent density and texture were significantly affected by variation of screw speed and die temperature, but the effect of LBG level was only significant for expansion and density. FTIR-ATR analysis revealed that a significant change occurred in the protein secondary structure as well as in the short-range ordered molecular structure of starch during fermentation and extrusion. The X-ray diffraction patterns of extrudates exhibited V-type pattern. Microstructure of the extrudates analyzed by FE-SEM exhibited variations in cell size and wall thickness depending on extrusion processing conditions and LBG level, which in turn lead to different textural perceptions.
Collapse
Affiliation(s)
- Aylin Altan
- Department of Food Engineering, Mersin University, Ciftlikköy, Mersin 33343, Turkey.
| | - Sibel Yağci
- Department of Food Engineering, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
7
|
Effect of Fermentation on the Quality of Dried Hollow Noodles and the Related Starch Properties. Foods 2022; 11:foods11223685. [PMID: 36429276 PMCID: PMC9689071 DOI: 10.3390/foods11223685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Crumbly dough fermentation was applied to produce dried hollow noodles, with Lactobacillus plantarum, Koji and yeast as the main fermenting agents. The cooking, textural and digestive properties of the noodles were studied, followed by the morphological, crystalline and thermal properties of the starch. The results show that, compared to unfermented noodles, the optimal cooking time of Koji pre-fermented noodles (KJHN) decreased from 460 s to 253 s, and they possessed a higher percentage of weakly bound water and degree of gelatinization at the same cooking time. After cooking, KJHN had a softer texture and higher starch digestibility. In addition, the physicochemical properties of the KJHN and Lactobacillus plantarum pre-fermented noodles (LPHN) showed a decrease in pH and amylose content, and an increase in reducing sugars content. The starch extracted from KJHN and LPHN had significant superficial erosion and pore characteristics, and the gelatinization enthalpy, relative crystallinity and short-range order were all increased. These changes in the starch properties and the quality characteristics of noodles resulting from Koji fermentation might provide a reference for the development of easy-to-cook and easy-to-digest noodles.
Collapse
|
8
|
Qi K, Yi X, Li C. Effects of endogenous macronutrients and processing conditions on starch digestibility in wheat bread. Carbohydr Polym 2022; 295:119874. [DOI: 10.1016/j.carbpol.2022.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
|
9
|
Hong J, Guo W, Chen P, Liu C, Wei J, Zheng X, Saeed Omer SH. Effects of Bifidobacteria Fermentation on Physico-Chemical, Thermal and Structural Properties of Wheat Starch. Foods 2022; 11:2585. [PMID: 36076770 PMCID: PMC9455791 DOI: 10.3390/foods11172585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria have been considered to be a very important species during sourdough fermentation. In order to explore the effects of bifidobacteria fermentation on thermal, physico-chemical and structural properties of wheat starch during dough fermentation, starch granules were separated from the fermented dough at different fermentation times, including 0 h, 2 h, 6 h, 9 h and 12 h. The results showed that the morphology of starch granules was destroyed gradually as the fermentation time increased, which appeared as erosion and rupture. With the increase in fermentation time, the solubility showed a significant increase, which changed from 8.51% (0 h) to 9.80% (12 h), and the swelling power was also increased from 9.31% (0 h) to 10.54% (12 h). As for the gelatinization property, the enthalpy was increased from 6.77 J/g (0 h) to 7.56 J/g (12 h), indicating a more stable thermal property of fermented starch, especially for the longer fermentation. The setback value was decreased with short fermentation time, indicating that the starch with a longer fermentation time was difficult to retrograde. The hardness of the gel texture was decreased significantly from 50.11 g to 38.66 g after fermentation for 12 h. The results show that bifidobacteria fermentation is an effective biological modification method of wheat starch for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | | |
Collapse
|
10
|
Garcia-Hernandez A, Roldan-Cruz C, Vernon-Carter EJ, Alvarez-Ramirez J. Effects of leavening agent and time on bread texture and in vitro starch digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1922-1930. [PMID: 35531417 PMCID: PMC9046505 DOI: 10.1007/s13197-021-05206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
Wheat dough added with baking dried yeast (BDY, 5 g) or baking powder (BP, 5 g) was leavened for 0, 2, 4 and 6 h for producing white bread (BBDY or BBD, respectively). The specific volume of BBDY was higher than for BBP. FTIR analysis revealed that BBP reduced the short-range crystallinity of starch granules, an effect magnified by the leavening time. Hardness and cohesiveness were higher for BBDY than for BBP which had a fragile crust structure. Readily digestible starch content of BBDY decreased (16.1-10.8%), while that of BBD increased at (17.1-31.5%) with leavening time. The opposite trend was found for resistant starch which increased from 71.2 to 79.1% for BBDY, and decreased from 69.3 to 40.2% for BBD. The hydrolysis rate constant for bread made with BP (~ 4 min-1) was about twofold faster than for BBDY. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05206-1.
Collapse
Affiliation(s)
- Angeles Garcia-Hernandez
- Facultad de Ciencias Químicas, Universidad Veracruzana-Región Xalapa, Calle de La Pérgola S/N, Zona Universitaria, 91000 Xalapa, VER México
| | - Cesar Roldan-Cruz
- Facultad de Nutrición, Universidad Veracruzana-Región Veracruz, Calle Carmen Serdán 5, Salvador Díaz Mirón, 91700 Veracruz, VER México
| | - Eduardo J. Vernon-Carter
- Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 Iztapalapa, México
| | - Jose Alvarez-Ramirez
- Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 Iztapalapa, México
| |
Collapse
|
11
|
Wei C, Ge Y, Zhao S, Liu D, Jiliu J, Wu Y, Hu X, Wei M, Wang Y, Wang W, Wang L, Cao L. Effect of Fermentation Time on Molecular Structure and Physicochemical Properties of Corn Ballast Starch. Front Nutr 2022; 9:885662. [PMID: 35571906 PMCID: PMC9094625 DOI: 10.3389/fnut.2022.885662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of fermentation treatment on the surface morphology, crystal structure, molecular weight, chain length distribution, and physicochemical properties of corn starch was investigated using natural fermentation of corn ballast. The amylose content in corn ballast starch reduced at first after natural fermentation, then grew, following the same trend as solubility. There were certain erosion marks on the surfaces of fermented corn ballast starch granules. The crystalline structure of corn ballast starch remained the same, i.e., a typical A-type crystalline structure, at different fermentation times; however, the intensities of diffraction peaks were different. The weight-average molecular weight of starch first increased and then decreased after fermentation. The content of low-molecular-weight starch (peak 3) decreased from 25.59 to 24.7% and then increased to 25.76%, while the content of high-molecular-weight starch (peak 1) increased from 51.45 to 53.26%, and then decreased to 52.52%. The fermentation time showed a negative correlation with the viscosity of starch, and the pasting temperature first increased, and then decreased. Natural fermentation can be used as a technical means to produce corn starch products as a result of the experiments' findings, and future experiments will detect and analyze the bacterial structure of corn fermentation broth in order to better understand the molecular mechanism of natural fermentation affecting the structure and physicochemical properties of corn starch.
Collapse
Affiliation(s)
- Chunhong Wei
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Shuting Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dezhi Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junlan Jiliu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunjiao Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xin Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhi Wei
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yifei Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - LongKui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Xu M, Zou J, Zhao X, Feng Y, Duan R, Yang B. Effect of lactobacteria fermentation on structure and physicochemical properties of Chinese yam starch (Dioscorea opposita Thunb.). Food Chem 2022; 387:132873. [PMID: 35390605 DOI: 10.1016/j.foodchem.2022.132873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Biotransformation is an effective technique to modify the structure and physicochemical properties of carbohydrates. In this work, Chinese yam (Dioscorea opposita Thunb.) starch was fermented by lactobacteria. The effect of fermentation time (6, 12, 30, 42 and 72 h) on structure and physicochemical properties of Chinese yam starch were investigated. The microstructure was destroyed after lactobacteria fermentation for 42 and 72 h. The X-ray diffraction pattern of Chinese yam starch indicated a transformed A to A + V crystalline type. → 4)-α-d-glucose-(1 → from backbone and unreduced terminal α-d-glucose-(1 → 4 from branch were identified by NMR spectra, and free glucose was only detected in fermented starch at 72 h. With the extension of fermentation time, the crystallinity and thermal parameters increased within 42 h and thereafter decreased. Mw, Mw/Mn, long chains of DP25-36 and DP ≥ 37, peak viscosity, trough viscosity, finally viscosity and setback presented a reverse trend.
Collapse
Affiliation(s)
- Meijuan Xu
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Jian Zou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Xiaodong Zhao
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430000, China
| | - Yongting Feng
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430000, China
| | - Ruoyu Duan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100000, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
13
|
Bian X, Chen JR, Yang Y, Yu DH, Ma ZQ, Ren LK, Wu N, Chen FL, Liu XF, Wang B, Zhang N. Effects of fermentation on the structure and physical properties of glutinous proso millet starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Yaqoob S, Liu H, Liu M, Zheng M, Awan KA, Cai D, Liu J. The effect of lactic acid bacteria and co-culture on structural, rheological, and textural profile of corn dough. Food Sci Nutr 2022; 10:264-271. [PMID: 35035927 PMCID: PMC8751425 DOI: 10.1002/fsn3.2666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
This study is aimed at assessing the effect of lactic acid bacteria (LAB) on corn flour using dynamic characterization methods including RVA, TPA, Rheometer, SEM, and DSC along with co-culture technique in order to enhance its applicability by evaluating the variations in rheological, textural, morphological, thermal, and structural properties. Our findings suggested that bacterial incorporation both individually and in combination (co-culture) revealed an improved corn dough profile with better properties. SEM showed irregular shape of particles having more grooves, indentations, and cracks. RVA demonstrated different pasting behavior on the dough. Bacterial inoculation in flour attributed to increase the TO (68.61-71.18), TP (73.74-78.42), TC (78.78-85.36), melting temperature (10.17-15.19), and ΔH (2.72-5.40). The hardness of corn was found approximately 75% of native dough. In treated corn, an increase was noted in both loss and storage modulus in correspondence with changes in the starch configuration and leaching of constituents. The results from DSC presented an increased melting temperature range and gelatinization enthalpy owing to bacterial treatment accredited to diversified morphological characteristics. The outcomes concluded in demonstration of a novel influence on structural, thermal, morphological, and rheological capabilities and capacities of corn dough. Lactic acid bacteria hydrolyzed part of the corn and flour had smaller, irregularly shaped particles with more holes in them, resulting in a reduced water retaining capacity. Textural, thermal, and pasting profile has also been improved due to degradation of macromolecules. Furthermore, the insight alterations induce various changes leading to improved corn flour. It may also develop the associations about the upright insurgence in the corn dough profile and its potential usage in industry and homes.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
- Department of Food Science and TechnologyFaculty of Life SciencesUniversity of Central PunjabLahorePakistan
| | - Huimin Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Meihong Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Mingzhu Zheng
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Kanza Aziz Awan
- Department of Food Science and TechnologyFaculty of Life SciencesUniversity of Central PunjabLahorePakistan
| | - Dan Cai
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Jingsheng Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| |
Collapse
|
15
|
|
16
|
Paixão e Silva GDL, Bento JAC, Lião LM, Soares Júnior MS, Caliari M. Starch Modified by Natural Fermentation in Orange‐Fleshed Sweet Potato. STARCH-STARKE 2021. [DOI: 10.1002/star.202100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giselle de Lima Paixão e Silva
- Department of Food Engineering Federal University of Goiás (UFG) – School of Agronomy Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Goiânia CEP 74690–900 Brazil
| | - Juliana Aparecida Correia Bento
- Department of Food Engineering Federal University of Goiás (UFG) – School of Agronomy Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Goiânia CEP 74690–900 Brazil
| | - Luciano Morais Lião
- Federal University of Goiás (UFG) – Institute of Chemistry Av. Goiás – Chácaras Califórnia, CP 131, Campus Samambaia Goiânia CEP 74001–970 Brazil
| | - Manoel Soares Soares Júnior
- Department of Food Engineering Federal University of Goiás (UFG) – School of Agronomy Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Goiânia CEP 74690–900 Brazil
| | - Márcio Caliari
- Department of Food Engineering Federal University of Goiás (UFG) – School of Agronomy Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Goiânia CEP 74690–900 Brazil
| |
Collapse
|
17
|
Qin R, Wang J, Chao C, Yu J, Copeland L, Wang S, Wang S. RS5 Produced More Butyric Acid through Regulating the Microbial Community of Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3209-3218. [PMID: 33630575 DOI: 10.1021/acs.jafc.0c08187] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The objective of this research was to compare the in vitro fermentability of three resistant starches (RS2, RS3, and RS5). Structural analyses showed that there were small changes in the long- and short-range ordered structure of three RSs after fermentation by human gut microbiota. The fermentation of RSs by gut microbiota produced large amounts of short-chain fatty acids, with RS5 producing more butyric acid and RS3 producing more lactic acid. RS3 and RS5 decreased the pH of the fermentation culture to a greater extent compared with RS2. Moreover, RS5 increased significantly the relative abundance of Bifidobacterium, Dialister, Collinsella, Romboutsia, and Megamonas. The results suggested that the form of RS was the main factor affecting the physiological function of RS and that RS5, as a recently recognized form of resistant starch, could be a better functional ingredient to improve health compared with RS2 and RS3.
Collapse
Affiliation(s)
- Renbing Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Technology Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Xu Y, Ding J, Gong S, Li M, Yang T, Zhang J. Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int J Biol Macromol 2020; 158:656-661. [PMID: 32387358 DOI: 10.1016/j.ijbiomac.2020.04.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/22/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of fermentation by Lactobacillus plantarum CGMCC 14177 strain on physicochemical properties and morphological characteristics of potato starch. The maximum total amylase and α-amylase production of L. plantarum CGMCC 14177 were 286.8 and 208.1 U/g, respectively. Fermented granules clearly exhibited pocked and dimpled surfaces. The granule properties changed to have a 1.9% increase in relative crystallinity. Overall the starch changed to have slight increases in onset and peak temperature, but resulted decreases of conclusion temperature and enthalpy. Fermentation decreased peak viscosity and breakdown value, while increased trough viscosity, final viscosity, and setback. Further analysis showed that fermentation increased the gel hardness and chewiness of the potato starch, but made little differences in the springiness, cohesiveness and resilience. Collectively, these results provide insight on how Lactobacillus strains can be used to modify the physicochemical properties of potato starch in ways that extend its use in industrial applications.
Collapse
Affiliation(s)
- Yihan Xu
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyu Ding
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenhuan Road, Shanghai 201306, China
| | - Shengxiang Gong
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Tiankui Yang
- Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Jianhua Zhang
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
19
|
Yaqoob S, Liu H, Zhao C, Liu M, Cai D, Liu J. Influence of multiple freezing/thawing cycles on a structural, rheological, and textural profile of fermented and unfermented corn dough. Food Sci Nutr 2019; 7:3471-3479. [PMID: 31762998 PMCID: PMC6848845 DOI: 10.1002/fsn3.1193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
In the current study, the impact of fermentation and freezing/thawing treatment on corn flour was studied. Fermentation revealed an increase (12%) in amylose content, while freezing reflected a loss of amylose. The results of scanning electron microscope (SEM) revealed more grooves, indentations, and the irregular shape of particles. Rapid Visco Analyzer (RVA) exhibited different pasting behavior on the dough. The molecular structure had similar profiles but showed several discernible absorbance at the different wavelengths. Differential scanning calorimetry (DSC) showed an increase in melting temperature range due to fermentation and freezing/thawing treatment attributed to more heterogeneous morphology. Overall, the results of this research showed the insight alterations that induce the changes in corn flour leading to improvement in some properties and it may enhance the acquaintance about the upright revolution in the profile of corn dough and its potential usage in industry and homes.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Huimin Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Chengbin Zhao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Meihong Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Dan Cai
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Jingsheng Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering laboratory for Wheat and Corn Deep ProcessingChangchunChina
| |
Collapse
|
20
|
Ye F, Xiao L, Liang Y, Zhou Y, Zhao G. Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules. Carbohydr Polym 2019; 213:79-88. [PMID: 30879692 DOI: 10.1016/j.carbpol.2019.02.077] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/30/2022]
Abstract
The effects of spontaneous fermentation on the molecular and physicochemical characteristics of sweet potato starch stored in tank during twelve months were investigated. From starch slurry collected during spontaneous fermentation, eight isolates showed amylolytic activity, which included two Acetobacter strains, five Bacillus strains and one Gluconacetobacter strain. By spontaneous fermentation, the amylose content and the average molecular weight of starch were significantly decreased. Besides, the native and fermented starches showed different amylopectin chain-length distribution patterns. Among them, no significant differences in granular morphology, granule size distribution, and crystalline structure. However, the thermal and pasting properties as well as the hardness of the starch gel differed significantly. Pearson's correlation analysis showed that the physicochemical properties was mainly influenced by the changes in the amylose content, amylopectin chain-length distribution as well as the average molecular weight of starch. These findings demonstrated the feasibility of spontaneous fermentation as a tool for modifying starches.
Collapse
Affiliation(s)
- Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ya'nan Liang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Center for Sweet Potato, Chongqing 400715, People's Republic of China.
| |
Collapse
|
21
|
Mousa AH, Bakry AM, Wang G, Zhang H. Efficacy of Saccharomyces Boulardii Metabolism during Fermentation of Milk Fortified with Wheat Grain Juice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ahmed Hassan Mousa
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Faculty of Environmental Agricultural Science, Arish University
| | - Amr Mohamed Bakry
- Department of Dairy Science, Faculty of Agriculture, Suez Canal University
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University
- National Engineering Research Center for Functional Food, Jiangnan University
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University
| |
Collapse
|
22
|
Zeng H, Zheng Y, Lin Y, Huang C, Lin S, Zheng B, Zhang Y. Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation. Food Chem 2018; 268:134-142. [DOI: 10.1016/j.foodchem.2018.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
|