1
|
Kim S, Park J, Jeong H, Park YS. Optimization and semi-continuous fermentation of gluco-oligosaccharide production with Weissella cibaria YRK005. Food Sci Biotechnol 2025; 34:991-1000. [PMID: 39974872 PMCID: PMC11832820 DOI: 10.1007/s10068-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 02/21/2025] Open
Abstract
In this study, we optimized gluco-oligosaccharide production using Weissella cibaria YRK005 through a semi-continuous fermentation. The Plackett-Burman design identified sucrose and maltose concentrations and fermentation temperature as key factors. Optimization using response surface methodology with a central composite design identified optimal conditions as 14.7% w/v sucrose, 13.5% w/v maltose, and 30 °C, predicting a relative peak area (RPA) of 115.6. Comparative analysis of the anaerobic and aerobic batch fermentation showed higher productivity under the aerobic conditions (25.5 RPA/h) than under the anaerobic conditions (23.7 RPA/h). The aerobic semi-continuous fermentation, with media replenishment every 7 h, achieved 39.2 RPA/h in one-cycle fermentation, exceeding the 27.2 RPA/h in two-cycle fermentation. These results highlight the importance of fermentation conditions in enhancing gluco-oligosaccharide production and suggests that the aerobic semi-continuous fermentation is a promising strategy for industrial applications to increase efficiency and reduce costs. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01703-z.
Collapse
Affiliation(s)
- Sungyoon Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jisun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
2
|
Bax HHM, Gaenssle AL, van der Maarel MJEC, Jurak E. The Synergistic Effect of GH13 and GH57 GBEs of Petrotoga mobilis Results in α-Glucan Molecules with a Higher Branch Density. Polymers (Basel) 2023; 15:4603. [PMID: 38232006 PMCID: PMC10708623 DOI: 10.3390/polym15234603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Glycogen is a biopolymer consisting of glycosyl units, with a linear backbone connected by α-1,4-linkages and branches attached via α-1,6-linkages. In microorganisms, glycogen synthesis involves multiple enzymes, with glycogen branching enzymes (GBEs) being vital for creating α-1,6-linkages. GBEs exist in two families: glycoside hydrolase (GH) 13 and GH57. Some organisms possess either a single GH13 or GH57 GBE, while others, such as Petrotoga mobilis, have both types of GBEs. In this study, the simultaneous use of a GH13 and GH57 GBE each from Petrotoga mobilis for α-glucan modification was investigated using a linear maltodextrin substrate with a degree of polymerization of 18 (DP18). The products from modifications by one or both GBEs in various combinations were analyzed and demonstrated a synergistic effect when both enzymes were combined, leading to a higher branch density in the glycogen structure. In this cooperative process, PmGBE13 was responsible for creating longer branches, whereas PmGBE57 hydrolyzed these branches, resulting in shorter lengths. The combined action of the two enzymes significantly increased the number of branched chains compared to when they acted individually. The results of this study therefore give insight into the role of PmGBE13 and PmGBE57 in glycogen synthesis, and show the potential use of both enzymes in a two-step modification to create an α-glucan structure with short branches at a high branch density.
Collapse
Affiliation(s)
| | | | | | - Edita Jurak
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (H.H.M.B.); (A.L.G.); (M.J.E.C.v.d.M.)
| |
Collapse
|
3
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Gaenssle ALO, van der Maarel MJEC, Jurak E. The influence of amylose content on the modification of starches by glycogen branching enzymes. Food Chem 2022; 393:133294. [PMID: 35653995 DOI: 10.1016/j.foodchem.2022.133294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022]
Abstract
Glycogen branching enzymes (GBEs) have been used to generate new branches in starches for producing slowly digestible starches. The aim of this study was to expand the knowledge about the mode of action of these enzymes by identifying structural aspects of starchy substrates affecting the products generated by different GBEs. The structures obtained from incubating five GBEs (three from glycoside hydrolase family (GH) 13 and two from GH57) on five different substrates exhibited minor but statistically significant correlations between the amount of longer chains (degree of polymerization (DP) 9-24) of the product and both the amylose content and the degree of branching of the substrate (Pearson correlation coefficient of ≤-0.773 and ≥0.786, respectively). GH57 GBEs mainly generated large products with long branches (100-700 kDa and DP 11-16) whereas GH13 GBEs produced smaller products with shorter branches (6-150 kDa and DP 3-10).
Collapse
Affiliation(s)
- Aline L O Gaenssle
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Marc J E C van der Maarel
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Edita Jurak
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Sunder M, Mumbrekar KD, Mazumder N. Gamma radiation as a modifier of starch – Physicochemical perspective. Curr Res Food Sci 2022; 5:141-149. [PMID: 35059645 PMCID: PMC8760443 DOI: 10.1016/j.crfs.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022] Open
Abstract
Starch is one of the most common and abundantly found carbohydrates in cereals, roots, legumes, and some fruits. It is a tasteless, colorless, and odorless source of energy that is present in the amyloplasts of plants. Native starch comprises amylose, a linear α-glucan having α-1,4-linkage and amylopectin, a branched polysaccharide with both α-1,4-linkage and α-1,6-linkage. Due to the low solubility, high viscosity, and unstable pasting property of native starch, it has been restricted from its application in industries. Although native starch has been widely used in various industries, modification of the same by various chemical, enzymatic and physical methods have been carried out to alter its properties for better performance in several industrial aspects. Physical modification like gamma radiation is frequently used as it is rapid, penetrates deeper, less toxic, and cost-effective. Starch when irradiated with gamma rays is observed to produce free radicals, generate sugars owing to cleavage of amylopectin branches, and exhibit variation in enzymatic digestion, amylose content, morphology, crystallinity, thermal property, and chemical composition. These physicochemical properties of the starch due to gamma radiation are assessed using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and its application are discussed. Assessment and comparison of morphological features of native and gamma-irradiated starch. Investigation of crystallinity and structural type of crystalline domains through XRD. FTIR spectroscopy confirmed the changes in chemical composition of gamma-irradiated and native starch. DSC analysis revealed the changes in gelatinization temperature of gamma-irradiated and native starch.
Collapse
|
7
|
Li J, Li L, Zhu J, Ai Y. Utilization of maltogenic α-amylase treatment to enhance the functional properties and reduce the digestibility of pulse starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Te Poele EM, van der Hoek SE, Chatziioannou AC, Gerwig GJ, Duisterwinkel WJ, Oudhuis LAACM, Gangoiti J, Dijkhuizen L, Leemhuis H. GtfC Enzyme of Geobacillus sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 → 6)/(α1 → 4) α-Glucan and Delays Bread Staling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9859-9868. [PMID: 34427087 DOI: 10.1021/acs.jafc.1c03475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic Lactobacilli. Database searches showed that related GtfC enzymes occur in Gram-positive bacteria of the genera Exiguobacterium, Bacillus, and Geobacillus, adapted to growth at more extreme temperatures. Here, we report characteristics of the Geobacillus sp. 12AMOR1 GtfC enzyme, with an optimal reaction temperature of 60 °C and a melting temperature of 68 °C, allowing starch conversions at relatively high temperatures. This thermostable 4,6-α-glucanotransferase has a novel product specificity, cleaving off predominantly maltose units from amylose, attaching them with an (α1 → 6)-linkage to acceptor substrates. In fact, this GtfC represents a novel maltogenic α-amylase. Detailed structural characterization of its starch-derived α-glucan products revealed that it yielded a unique polymer with alternating (α1 → 6)/(α1 → 4)-linked glucose units but without branches. Notably, this Geobacillus sp. 12AMOR1 GtfC enzyme showed clear antistaling effects in bread bakery products.
Collapse
Affiliation(s)
- Evelien M Te Poele
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Gerrit J Gerwig
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Joana Gangoiti
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | - Hans Leemhuis
- Royal Avebe, Innovation Center, 9747 AW Groningen, Netherlands
| |
Collapse
|
9
|
Balakrishna AK, Wazed MA, Farid M. A Review on the Effect of High Pressure Processing (HPP) on Gelatinization and Infusion of Nutrients. Molecules 2020; 25:E2369. [PMID: 32443759 PMCID: PMC7287844 DOI: 10.3390/molecules25102369] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100-600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization, but has many other applications. The focus of this paper is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality will be also discussed, highlighting the latest published studies and the innovative methods adopted.
Collapse
Affiliation(s)
| | | | - Mohammed Farid
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.K.B.); (M.A.W.)
| |
Collapse
|
10
|
Sorndech W, Rodtong S, Blennow A, Tongta S. Impact of Resistant Maltodextrins and Resistant Starch on Human Gut Microbiota and Organic Acids Production. STARCH-STARKE 2019. [DOI: 10.1002/star.201800231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology; Institute of Agricultural Technology; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| | - Sureelak Rodtong
- School of Preclinic; Institute of Science; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| | - Andreas Blennow
- Department of Plant and Environmental Sciences; Faculty of Sciences; University of Copenhagen; C 1871 Frederiksberg Denmark
| | - Sunanta Tongta
- School of Food Technology; Institute of Agricultural Technology; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
11
|
Casa-Villegas M, Marín-Navarro J, Polaina J. Synthesis of Isomaltooligosaccharides by Saccharomyces cerevisiae Cells Expressing Aspergillus niger α-Glucosidase. ACS OMEGA 2017; 2:8062-8068. [PMID: 30023572 PMCID: PMC6045415 DOI: 10.1021/acsomega.7b01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The α-glucosidase encoded by the aglA gene of Aspergillus niger is a secreted enzyme belonging to family 31 of glycoside hydrolases. This enzyme has a retaining mechanism of action and displays transglycosylating activity that makes it amenable to be used for the synthesis of isomaltooligosaccharides (IMOs). We have expressed the aglA gene in Saccharomyces cerevisiae under control of a galactose-inducible promoter. Recombinant yeast cells expressing the aglA gene produced extracellular α-glucosidase activity about half of which appeared cell bound whereas the other half was released into the culture medium. With maltose as the substrate, panose is the main transglycosylation product after 8 h of incubation, whereas isomaltose is predominant after 24 h. Isomaltose also becomes predominant at shorter times if a mixture of maltose and glucose is used instead of maltose. To facilitate IMO production, we have designed a procedure by which yeast cells can be used directly as the catalytic agent. For this purpose, we expressed in S. cerevisiae gene constructs in which the aglA gene is fused to glycosylphosphatidylinositol anchor sequences, from the yeast SED1 gene, that determine the covalent binding of the hybrid protein to the cell membrane. The resulting hybrid enzymes were stably attached to the cell surface. The cells from cultures of recombinant yeast strains expressing aglA-SED1 constructions can be used to produce IMOs in successive batches.
Collapse
Affiliation(s)
- Mary Casa-Villegas
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| | - Julia Marín-Navarro
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
- Departamento
de Bioquímica y Biología Molecular, Universidad de Valencia, 46100-Burjassot, Valencia, Spain
| | - Julio Polaina
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| |
Collapse
|