1
|
Mojo-Quisani A, Licona-Pacco K, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, Pumacahua-Ramos A, Huamaní-Meléndez VJ. Characterization of Nano- and Microstructures of Native Potato Starch as Affected by Physical, Chemical, and Biological Treatments. Foods 2024; 13:2001. [PMID: 38998507 PMCID: PMC11240970 DOI: 10.3390/foods13132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 μm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.
Collapse
Affiliation(s)
- Antonieta Mojo-Quisani
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Katiuska Licona-Pacco
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - David Choque-Quispe
- Agroindustrial Engineering, José María Arguedas National University, Andahuaylas 03701, Peru
| | - Miriam Calla-Florez
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | | | - Augusto Pumacahua-Ramos
- Department of Food Engineering, Universidad Nacional Intercultural de Quillabamba, Cusco 08741, Peru
| | - Víctor J Huamaní-Meléndez
- Department of Food Engineering and Technology, São Paulo State University (UNESP), Campus of São José do Rio Preto, São Paulo 15385-000, Brazil
| |
Collapse
|
2
|
Torres FG, Troncoso OP, Urtecho A, Soto P, Pachas B. Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38865700 DOI: 10.1021/acsami.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Adrián Urtecho
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Percy Soto
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Bruce Pachas
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| |
Collapse
|
3
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
4
|
Marta H, Wijaya C, Sukri N, Cahyana Y, Mohammad M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers (Basel) 2022; 14:polym14224875. [PMID: 36433002 PMCID: PMC9693780 DOI: 10.3390/polym14224875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Starch can be found in the stems, roots, fruits, and seeds of plants such as sweet potato, cassava, corn, potato, and many more. In addition to its original form, starch can be modified by reducing its size. Starch nanoparticles have a small size and large active surface area, making them suitable for use as fillers or as a reinforcing material in bioplastics. The aim of reinforcing material is to improve the characteristics of bioplastics. This literature study aims to provide in-depth information on the potential use of starch nanoparticles as a reinforcing material in bioplastic packaging. This study also reviews starch size reduction methods including acid hydrolysis, nanoprecipitation, milling, and others; characteristics of the nano-starch particle; and methods to produce bioplastic and its characteristics. The use of starch nanoparticles as a reinforcing material can increase tensile strength, reduce water vapor and oxygen permeability, and increase the biodegradability of bioplastics. However, the use of starch nanoparticles as a reinforcing material for bioplastic packaging still encounters obstacles in its commercialization efforts, due to high production costs and ineffectiveness.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Claudia Wijaya
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nandi Sukri
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Wang F, Ma R, Zhan J, Shi W, Zhu Y, Tian Y. Superhydrophobic/superoleophilic starch-based cryogels coated by silylated porous starch/Fe3O4 hybrid micro/nanoparticles for removing discrete oil patches from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Tagliapietra BL, de Melo BG, Sanches EA, Plata‐Oviedo M, Campelo PH, Clerici MTPS. From Micro to Nanoscale: A Critical Review on the Concept, Production, Characterization, and Application of Starch Nanostructure. STARCH-STARKE 2021. [DOI: 10.1002/star.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Bruna Guedes de Melo
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Edgar A. Sanches
- Laboratory of Nanostructured Polymers (NANOPOL) Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Manuel Plata‐Oviedo
- Graduate Program of Food Technology Federal University of Technology – Paraná (UTFPR) 1233, 87301–899 Campo Mourão Paraná Brazil
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| |
Collapse
|
7
|
Chavan P, Sinhmar A, Nehra M, Thory R, Pathera AK, Sundarraj AA, Nain V. Impact on various properties of native starch after synthesis of starch nanoparticles: A review. Food Chem 2021; 364:130416. [PMID: 34192635 DOI: 10.1016/j.foodchem.2021.130416] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
In recent years, interdisciplinary research is more focused on particle size, which helps in exploring the relation between micro and macroscopic properties of various materials. Starch nanoparticles are generally synthesized by using acid/enzymatic hydrolysis, gamma irradiation, simple nanoprecipitation, ultra-sonication, and homogenization treatments. The properties like amylose content, pasting, rheological, morphological, size distribution, etc. are affected after the formation of nanoparticles from starch. This study emphasizes how various properties are changed in starch nanoparticles. Starch nanoparticles are mainly used in the formulation of nano-emulsion, nano starch-based composite film, and drug delivery. The impact on various native starch properties after the preparation of starch nanoparticles are less reported. So, all the aspects related to various starch properties and their nanoparticles are extensively reviewed in this study so that the listed findings can be utilized in future processes to increase the various foods and non-food utilization of starch nanoparticles.
Collapse
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Rahul Thory
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | - Ashok Kumar Pathera
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Antony Allwyn Sundarraj
- Sri Shakti Institute of Engineering and Technology, Sri Shakti Nagar, Coimbatore 641062, TN, India
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
8
|
Campelo PH, Sant’Ana AS, Pedrosa Silva Clerici MT. Starch nanoparticles: production methods, structure, and properties for food applications. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|