1
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
2
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|
3
|
Alsufyani T, M'sakni NH. Part A: Biodegradable Bio-Composite Film Reinforced with Cellulose Nanocrystals from Chaetomorpha linum into Thermoplastic Starch Matrices. Polymers (Basel) 2023; 15:polym15061542. [PMID: 36987321 PMCID: PMC10058665 DOI: 10.3390/polym15061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, macroalgae and microalgae have played a significant role in the production of organic matter, fiber, and minerals on Earth. They contribute to both technical and medicinal applications as well as being a healthy and nutritious food for humans and animals. The theme of this work concerns the development and exploitation of Chaetomorpha linum (C. linum) biomass, through the elaboration of a new starch-based composite film reinforced by cellulose nanocrystals (CL-CNC) derived from C. linum. The first step involves the chemical extraction of CL-CNC from dry C. linum algae biomass. To achieve this, three types of cyclic treatment were adopted: alkalinization (sodium hydroxide) followed by bleaching (sodium hypochlorite) and acid hydrolysis (hydrochloric acid). We then studied the optimization of the development of bio-composite films based on corn starch (CS) reinforced by CL-CNC. These polymeric films were produced using the solution-casting technique followed by the thermal evaporation process. Structure and interactions were modified by using different amounts of glycerol plasticizers (20% and 50%) and different CS:CNC ratios (7:3 and 8:2). These materials were characterized by UV visible (UV/Vis), Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM) spectroscopy to understand structure-property relationships. The result revealed that the best matrix composition is 7:3 (CS: CL-CNC) with 50% glycerol, which reflects that the reinforcing effect of CL-CNC was greater in bio-composites prepared with a 50% plasticizer, revealing the formation of hydrogen bonds between CL-CNC and CS.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Science, Monastir University, Monastir 5019, Tunisia
| |
Collapse
|
4
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
5
|
Luan F, Xu Z, Wang K, Qi X, Guo Z. Synthesis of Water-Soluble Sulfonated Chitin Derivatives for Potential Antioxidant and Antifungal Activity. Mar Drugs 2022; 20:md20110668. [PMID: 36354991 PMCID: PMC9697452 DOI: 10.3390/md20110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes.
Collapse
Affiliation(s)
- Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| | - Zhenhua Xu
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Kai Wang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Xin Qi
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| |
Collapse
|
6
|
Rivadeneira-Velasco KE, Utreras-Silva CA, Díaz-Barrios A, Sommer-Márquez AE, Tafur JP, Michell RM. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers (Basel) 2021; 13:polym13193227. [PMID: 34641042 PMCID: PMC8512963 DOI: 10.3390/polym13193227] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.
Collapse
|