1
|
Hosseini SM, Panahi-Azar A, Sheybani-Arani M, Morovatshoar R, Mirzadeh M, Salimi Asl A, Naghdipour Mirsadeghi M, Khajavi-Mayvan F. Vitamins, minerals and their maternal levels' role in brain development: An updated literature-review. Clin Nutr ESPEN 2024; 63:31-45. [PMID: 38907995 DOI: 10.1016/j.clnesp.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
One's neurobehavioural and mental health are built during the exact and complex process of brain development. It is thought that fetal development is where neuropsychiatric disorders first emerged. Behavioural patterns can change as a result of neuropsychiatric illnesses. The incidence is rising quickly; nevertheless, providing exceptional care remains a significant challenge for families and healthcare systems. It has been demonstrated that one of the main factors causing the transmission of these diseases is maternal exposure. Through physiologic pathways, maternal health and intrauterine exposures can affect brain development. Our attention has been focused on epigenetic factors, particularly in the gestational environment, which may be responsible for human neurodegenerative diseases since our main mental development occurs during the nine months of intrauterine life. After thoroughly searching numerous databases, this study examined the effect of fat-soluble vitamins, water-soluble vitamins, and minerals and their maternal-level effect on brain development.
Collapse
Affiliation(s)
| | - Ava Panahi-Azar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | | | - Reza Morovatshoar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mahdieh Mirzadeh
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ali Salimi Asl
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
2
|
Bian P, Zhang H, Ye C, Luo C, Jiang H, Wang Y, Dong Y, Yang J, Zhang F, Wang X, Zhang Y, Jia Z, Lei Y. GAS6 as a potential target to alleviate neuroinflammation during Japanese encephalitis in mouse models. J Neuroinflammation 2024; 21:231. [PMID: 39300526 PMCID: PMC11411859 DOI: 10.1186/s12974-024-03225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Viral encephalitis is characterized by inflammation of the brain parenchyma caused by a variety of viruses, among which the Japanese encephalitis (JE) virus (JEV) is a typical representative arbovirus. Neuronal death, neuroinflammation, and breakdown of the blood brain barrier (BBB) constitute vicious circles of JE progression. Currently, there is no effective therapy to prevent this damage. Growth arrest specific gene 6 (GAS6) is a secreted growth factor that binds to the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases and has been demonstrated to participate in neuroprotection and suppression of inflammation in many central nervous system (CNS) diseases which has great potential for JE intervention. In this study, we found that GAS6 expression in the brain was decreased and was reversely correlated with viral load and neuronal loss. Mice with GAS6/TAM signalling deficiency showed higher mortality and accelerated neuroinflammation during peripheral JEV infection, accompanied by BBB breakdown. GAS6 directly promoted the expression of tight junction proteins in bEnd.3 cells and strengthened BBB integrity, partly via AXL. Mice administered GAS6 were more resistant to JEV infection due to increased BBB integrity, as well as decreased viral load and neuroinflammation. Thus, targeted GAS6 delivery may represent a strategy for the prevention and treatment of JE especially in patients with impaired BBB.
Collapse
Affiliation(s)
- Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710027, China
| | - Haijun Zhang
- Xijing 986 Hospital, Air Force Medical University, Xi'an, 710054, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chuanyu Luo
- Norinco General Hospital, Xi'an, 710065, China
| | - Hong Jiang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Jing Yang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710027, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Zhansheng Jia
- Department of Infectious Diseases, Xi'an International Medical Center Hospital, Xi'an, 710100, China.
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Goto S, Setoguchi S, Matsunaga K, Takata J. Effects of radical scavengers for reactive oxygen species on vitamin K-induced phototoxicity under UVA irradiation. Toxicol In Vitro 2024; 98:105839. [PMID: 38723978 DOI: 10.1016/j.tiv.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Vitamin K possesses efficacy as a topical dermatological agent. However, vitamin K is phototoxic and susceptible to photodegradation. Herein, we investigated the mechanisms underlying the phototoxicity of phylloquinone (PK, vitamin K1) and menaquinone-4 (MK-4, vitamin K2) under ultraviolet A (UVA) irradiation using various reactive oxygen species (ROS) scavengers. This resulted in the production of superoxide anion radicals via type I and singlet oxygen via type II photodynamic reactions, which were quenched by the ROS scavengers: superoxide dismutase and sodium azide (NaN3). In HaCaT cells, MK-4 and PK induced the production of intracellular ROS, particularly hydrogen peroxide, in response to UVA irradiation. Furthermore, the addition of catalase successfully decreased maximum ROS levels by approximately 30%. NaN3 and catalase decreased the maximum reduction in cell viability induced by UVA-irradiated PK and MK-4 in cell viability by approximately 2-7-fold. Additionally, ROS scavengers had no effect on the photodegradation of PK or MK-4 at 373 nm. Therefore, the phototoxicities of PK and MK-4 were attributed to the generation of singlet oxygen and hydrogen peroxide, underscoring the importance of photoshielding in circumventing phototoxicity.
Collapse
Affiliation(s)
- Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Joussaume A, Kanthou C, Pardo OE, Karayan-Tapon L, Benzakour O, Dkhissi F. The Vitamin K-Dependent Anticoagulant Factor, Protein S, Regulates Vascular Permeability. Curr Issues Mol Biol 2024; 46:3278-3293. [PMID: 38666935 PMCID: PMC11048934 DOI: 10.3390/cimb46040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor.
Collapse
Affiliation(s)
- Aurélie Joussaume
- Université de Poitiers, CHU de Poitiers, ProDiCeT, UR 24144 Poitiers, France; (A.J.); (O.B.)
| | - Chryso Kanthou
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield S10 2RX, UK;
| | - Olivier E. Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Laboratoire de Cancérologie Biologique, UR 24144 Poitiers, France;
| | - Omar Benzakour
- Université de Poitiers, CHU de Poitiers, ProDiCeT, UR 24144 Poitiers, France; (A.J.); (O.B.)
| | - Fatima Dkhissi
- Université de Poitiers, CHU de Poitiers, ProDiCeT, UR 24144 Poitiers, France; (A.J.); (O.B.)
| |
Collapse
|
5
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
6
|
Coronas V, Arnault P, Jégou JF, Cousin L, Rabeony H, Clarhaut S, Harnois T, Lecron JC, Morel F. IL-22 Promotes Neural Stem Cell Self-Renewal in the Adult Brain. Stem Cells 2023; 41:252-259. [PMID: 36635952 DOI: 10.1093/stmcls/sxad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Mainly known for its role in immune defense and inflammation, interleukin 22 (IL-22) has emerged over the past decade as a cytokine involved in the adaptation of stem/progenitor cell activity for tissue homeostasis and repair. IL-22 is present in the brain, which harbors neural stem cells (NSC) in specific niches of which the ventricular-subventricular zone (V-SVZ) is the most important. In this study, we examined a possible effect of IL-22 on NSC in the adult mouse brain. We demonstrate that the IL-22 receptor is expressed in the V-SVZ, mainly in NSC characterized by their SOX2 expression. Addition of IL-22 to V-VSZ cell cultures resulted in an increase in NSC self-renewal, associated with a shift in NSC division mode towards symmetric proliferative divisions at the expense of differentiative divisions. Conversely, loss of IL-22 in knockout mice led to a decrease in neurosphere yield, suggesting a reduction in the NSC population, which was confirmed by the decrease in cells retaining BrdU labeling in IL-22 knockout mice. Our study supports that IL-22 is involved in the development and/or maintenance of V-VSZ NSC and opens new avenues to further investigate the role of IL-22 in NSC biology in health and disease.
Collapse
Affiliation(s)
- Valérie Coronas
- 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Patricia Arnault
- 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Jean-François Jégou
- LITEC, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, University of Poitiers, Poitiers, France
| | - Laetitia Cousin
- 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Hanitriniaina Rabeony
- LITEC, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, University of Poitiers, Poitiers, France
| | - Sandrine Clarhaut
- LITEC, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, University of Poitiers, Poitiers, France
| | - Thomas Harnois
- 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Jean-Claude Lecron
- LITEC, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, University of Poitiers, Poitiers, France
- Service Immunologie et Inflammation, UBM, CHU de Poitiers, Poitiers, France
| | - Franck Morel
- LITEC, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, University of Poitiers, Poitiers, France
| |
Collapse
|
7
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
8
|
Abstract
Tyro3, Axl and Mertk are members of the TAM family of tyrosine kinase receptors. TAMs are activated by two structurally homologous ligands GAS6 and PROS1. TAM receptors and ligands are widely distributed and often co-expressed in the same cells allowing diverse functions across many systems including the immune, reproductive, vascular, and the developing as well as adult nervous systems. This review will focus specifically on TAM signaling in the nervous system, highlighting the essential roles this pathway fulfills in maintaining cell survival and homeostasis, cellular functions such as phagocytosis, immunity and tissue repair. Dysfunctional TAM signaling can cause complications in development, disruptions in homeostasis which can rouse autoimmunity, neuroinflammation and neurodegeneration. The development of therapeutics modulating TAM activities in the nervous system has great prospects, however, foremost we need a complete understanding of TAM signaling pathways.
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| | - Arielle Hochberg
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
9
|
Yoda H, Nakayama T, Miura M, Toriyama M, Motohashi S, Suzuki T. Vitamin K3 derivative induces apoptotic cell death in neuroblastoma via downregulation of MYCN expression. Biochem Biophys Rep 2019; 20:100701. [PMID: 31844686 PMCID: PMC6895568 DOI: 10.1016/j.bbrep.2019.100701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022] Open
Abstract
Neuroblastoma is a pediatric malignant tumor arising from the sympathetic nervous system. The patients with high-risk neuroblastomas frequently exhibit amplification and high expression of the MYCN gene, resulting in worse clinical outcomes. Vitamin K3 (VK3) is a synthetic VK-like compound that has been known to have antitumor activity against various types of cancers. In the present study, we have asked whether VK3 and its derivative, VK3-OH, could have the antitumor activity against neuroblastoma-derived cells. Based on our results, VK3-OH strongly inhibited cell proliferation and induced apoptotic cell death compared to VK3. Treatment of MYCN-driven neuroblastoma cells with VK3-OH potentiated tumor suppressor p53 accompanied by downregulation of anti-apoptotic Bcl-2 and Mcl-1. Interestingly, VK3-OH also suppressed the MYCN at mRNA and protein levels. Furthermore, we found downregulation of LIN28B following VK3-OH treatment in MYCN-amplified and overexpressed neuroblastoma cells. Collectively, our current findings strongly suggest that VK3-OH provides a potential therapeutic strategy for patients with MYCN-driven neuroblastomas.
Collapse
Affiliation(s)
- Hiroyuki Yoda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Toshimitsu Nakayama
- Center for Pharmacist Education, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Masaharu Toriyama
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Shigeyasu Motohashi
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
- Department of Pediatrics and Child Health, School of Medicine, Nihon University, 30-1 Oyaguchikami, Itabashi-ku, Tokyo, 173-0032, Japan
| |
Collapse
|
10
|
TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. DISEASE MARKERS 2019; 2019:2387614. [PMID: 31636733 PMCID: PMC6766163 DOI: 10.1155/2019/2387614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that pathogenic mechanisms underlying neurodegeneration are strongly linked with neuroinflammatory responses. Tyro3, Axl, and Mertk (TAM receptors) constitute a subgroup of the receptor tyrosine kinase family, cell surface receptors which transmit signals from the extracellular space to the cytoplasm and nucleus. TAM receptors and the corresponding ligands, Growth Arrest Specific 6 and Protein S, are expressed in different tissues, including the nervous system, playing complex roles in tissue repair, inflammation and cell survival, proliferation, and migration. In the nervous system, TAM receptor signalling modulates neurogenesis and neuronal migration, synaptic plasticity, microglial activation, phagocytosis, myelination, and peripheral nerve repair, resulting in potential interest in neuroinflammatory and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In Alzheimer and Parkinson diseases, a role of TAM receptors in neuronal survival and pathological protein aggregate clearance has been suggested, while in Multiple Sclerosis TAM receptors are involved in myelination and demyelination processes. To better clarify roles and pathways involving TAM receptors may have important therapeutic implications, given the fine modulation of multiple molecular processes which could be reached. In this review, we summarise the roles of TAM receptors in the central nervous system, focusing on the regulation of immune responses and microglial activities and analysing in vitro and in vivo studies regarding TAM signalling involvement in neurodegeneration.
Collapse
|
11
|
Ginisty A, Oliver L, Arnault P, Vallette F, Benzakour O, Coronas V. The vitamin K-dependent factor, protein S, regulates brain neural stem cell migration and phagocytic activities towards glioma cells. Eur J Pharmacol 2019; 855:30-39. [PMID: 31028740 DOI: 10.1016/j.ejphar.2019.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
Malignant gliomas are the most common primary brain tumors. Due to both their invasive nature and resistance to multimodal treatments, these tumors have a very high percentage of recurrence leading in most cases to a rapid fatal outcome. Recent data demonstrated that neural stem/progenitor cells possess an inherent ability to migrate towards glioma cells, track them in the brain and reduce their growth. However, mechanisms involved in these processes have not been explored in-depth. In the present report, we investigated interactions between glioma cells and neural stem/progenitor cells derived from the subventricular zone, the major brain stem cell niche. Our data show that neural stem/progenitor cells are attracted by cultured glioma-derived factors. Using multiple approaches, we demonstrate for the first time that the vitamin K-dependent factor protein S produced by glioma cells is involved in tumor tropism through a mechanism involving the tyrosine kinase receptor Tyro3 that, in turn, is expressed by neural stem/progenitor cells. Neural stem/progenitor cells decrease the growth of both glioma cell cultures and clonogenic population. Cultured neural stem/progenitor cells also engulf, by phagocytosis, apoptotic glioma cell-derived fragments and this mechanism depends on the exposure of phosphatidylserine eat-me signal and is stimulated by protein S. The disclosure of a role of protein S/Tyro3 axis in neural stem/progenitor cell tumor-tropism and the demonstration of a phagocytic activity of neural stem/progenitor cells towards dead glioma cells that is regulated by protein S open up new perspectives for both stem cell biology and brain physiopathology.
Collapse
Affiliation(s)
- Aurélie Ginisty
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Present Address: Biological Adaptation and Ageing (B2A) UMR 8256 CNRS-UPMC Institut de Biologie Paris Seine (IBPS) Sorbonne Université, 75005, Paris, France
| | - Lisa Oliver
- CRCINA, Inserm U1232, Université de Nantes, 44 0000, Nantes, France; Institut de Cancérologie de l'Ouest, René Gauducheau, 44 8000, St Herblain, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - Patricia Arnault
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - François Vallette
- CRCINA, Inserm U1232, Université de Nantes, 44 0000, Nantes, France; Institut de Cancérologie de l'Ouest, René Gauducheau, 44 8000, St Herblain, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - Omar Benzakour
- Inserm U1082, Université de Poitiers, 86073, Poitiers cedex 09, France
| | - Valérie Coronas
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Micronit GDR CNRS 3697, 75020, Paris, France.
| |
Collapse
|
12
|
Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget 2019; 10:2292-2305. [PMID: 31040920 PMCID: PMC6481349 DOI: 10.18632/oncotarget.26765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin K serves as an essential co-factor in the γ-carboxylation of glutamate to γ-carboxyglutamate (GLA), a post-translational modification mediated by gamma-glutamyl carboxylase (GGCX) and vitamin K oxidoreductases (VKORC1 or VKORC1L1). While both phylloquinone (K1) and menaquinone (K2) support the synthesis of GLA-modified proteins, studies assessing K1 and/or K2 effects in cancer cells have reported minimal effects of K1 and anti-proliferative or pro-apoptotic effects of K2. qPCR results indicated highest expression of GGCX, VKORC1, and VKORC1L1 in triple negative breast cancer (TNBC) cell lines, Hs578T, MDA-MB-231 and SUM159PT, and in advanced stage disease. To assess differential effects of vitamin K, TNBC cells were cultured in media supplemented with K1 or K2. K1 treatment increased cell growth, and enhanced stemness and GLA-modified protein expression in TNBC lysates. Alternatively, lysates from cells exposed to vehicle, K2, or the VKOR antagonist, warfarin, did not express GLA-modified proteins. Further, K2 exposure reduced stemness and elicited anti-proliferative effects. These studies show that TNBC cells express a functional vitamin K pathway and that K1 and K2 exert distinct phenotypic effects. Clarification of the mechanisms by which K1 and K2 induce these effects may lead to relevant therapeutic strategies for manipulating this pathway in TNBC patients.
Collapse
Affiliation(s)
- Sarah Beaudin
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Leila Kokabee
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
13
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
15
|
Shafit-Zagardo B, Gruber RC, DuBois JC. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Pharmacol Ther 2018. [PMID: 29514053 DOI: 10.1016/j.pharmthera.2018.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyro3, Axl, and Mertk, referred to as the TAM family of receptor tyrosine kinases, are instrumental in maintaining cell survival and homeostasis in mammals. TAM receptors interact with multiple signaling molecules to regulate cell migration, survival, phagocytosis and clearance of metabolic products and cell debris called efferocytosis. The TAMs also function as rheostats to reduce the expression of proinflammatory molecules and prevent autoimmunity. All three TAM receptors are activated in a concentration-dependent manner by the vitamin K-dependent growth arrest-specific protein 6 (Gas6). Gas6 and the TAMs are abundantly expressed in the nervous system. Gas6, secreted by neurons and endothelial cells, is the sole ligand for Axl. ProteinS1 (ProS1), another vitamin K-dependent protein functions mainly as an anti-coagulant, and independent of this function can activate Tyro3 and Mertk, but not Axl. This review will focus on the role of the TAM receptors and their ligands in the nervous system. We highlight studies that explore the function of TAM signaling in myelination, the visual cortex, neural cancers, and multiple sclerosis (MS) using Gas6-/- and TAM mutant mice models.
Collapse
Affiliation(s)
- Bridget Shafit-Zagardo
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ross C Gruber
- Sanofi, Neuroinflammation and MS Research, 49 New York Ave, Framingham, MA 01701, United States
| | - Juwen C DuBois
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
16
|
Jung Y, Decker AM, Wang J, Lee E, Kana LA, Yumoto K, Cackowski FC, Rhee J, Carmeliet P, Buttitta L, Morgan TM, Taichman RS. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 2017; 7:25698-711. [PMID: 27028863 PMCID: PMC5041937 DOI: 10.18632/oncotarget.8365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
GAS6 and its receptors (Tryo 3, Axl, Mer or “TAM”) are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment. We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. setting. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133–/CD44–) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo. Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lulia A Kana
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - James Rhee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center (VRC), VIB, K.U. Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, K.U. Leuven, Belgium
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Membrane Cholesterol Modulates Superwarfarin Toxicity. Biophys J 2017; 110:1777-1788. [PMID: 27119638 DOI: 10.1016/j.bpj.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.
Collapse
|
18
|
Zelentsova-Levytskyi K, Talmi Z, Abboud-Jarrous G, Capucha T, Sapir T, Burstyn-Cohen T. Protein S Negatively Regulates Neural Stem Cell Self-Renewal through Bmi-1 Signaling. Front Mol Neurosci 2017; 10:124. [PMID: 28512399 PMCID: PMC5411449 DOI: 10.3389/fnmol.2017.00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Revealing the molecular mechanisms underlying neural stem cell self-renewal is a major goal toward understanding adult brain homeostasis. The self-renewing potential of neural stem and progenitor cells (NSPCs) must be tightly regulated to maintain brain homeostasis. We recently reported the expression of Protein S (PROS1) in adult hippocampal NSPCs, and revealed its role in regulation of NSPC quiescence and neuronal differentiation. Here, we investigate the effect of PROS1 on NSPC self-renewal and show that genetic ablation of Pros1 in neural progenitors increased NSPC self-renewal by 50%. Mechanistically, we identified the upregulation of the polycomb complex protein Bmi-1 and repression of its downstream effectors p16Ink4a and p19Arf to promote NSPC self-renewal in Pros1-ablated cells. Rescuing Pros1 expression restores normal levels of Bmi-1 signaling, and reverts the proliferation and enhanced self-renewal phenotypes observed in Pros1-deleted cells. Our study identifies PROS1 as a novel negative regulator of NSPC self-renewal. We conclude PROS1 is instructive for NSPC differentiation by negatively regulating Bmi-1 signaling in adult and embryonic neural stem cells.
Collapse
Affiliation(s)
| | - Ziv Talmi
- Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| | - Ghada Abboud-Jarrous
- Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| | - Tal Capucha
- Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovot, Israel
| | - Tal Burstyn-Cohen
- Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| |
Collapse
|
19
|
Kim DY, Yu J, Mui RK, Niibori R, Taufique HB, Aslam R, Semple JW, Cordes SP. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ( anx) mutation. Dis Model Mech 2017; 10:581-595. [PMID: 28093506 PMCID: PMC5451163 DOI: 10.1242/dmm.027433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
Collapse
Affiliation(s)
- Dennis Y Kim
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Joanna Yu
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Ryan K Mui
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hamza Bin Taufique
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Sainaghi PP, Bellan M, Lombino F, Alciato F, Carecchio M, Galimberti D, Fenoglio C, Scarpini E, Cantello R, Pirisi M, Comi C. Growth Arrest Specific 6 Concentration is Increased in the Cerebrospinal Fluid of Patients with Alzheimer's Disease. J Alzheimers Dis 2017; 55:59-65. [PMID: 27636849 DOI: 10.3233/jad-160599] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest specific 6 (Gas6) has neurotrophic and neuroinflammatory functions, and may play a role in Alzheimer's disease (AD). In keeping with this hypothesis, we observed that cerebrospinal fluid (CSF) Gas6 is increased in AD patients compared to controls (63 versus 67 subjects; median value 13.3 versus 9.1 ng/ml; p < 0.0001). Thereafter, we assessed whether CSF Gas6 concentration was correlated to the following parameters: disease duration, MMSE score two years after clinical diagnosis, AD CSF biomarkers, and years of formal schooling. We detected an inverse correlation between CSF Gas6 levels at diagnosis and both disease duration (p < 0.0001) and decrease in the MMSE score two years later (p < 0.0001). Conversely, we found no correlation between CSF Gas6 and both AD biomarkers and years of formal schooling. In conclusion, our results suggest that upregulation of CSF Gas6 may be part of a defensive response aimed at counteracting AD progression.
Collapse
Affiliation(s)
- Pier Paolo Sainaghi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Immuno-Rheumatology Unit, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Mattia Bellan
- Immuno-Rheumatology Unit, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, Internal Medicine, University of Piemonte Orientale, Novara, Italy
| | - Franco Lombino
- Department Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical Center (UKE), Hamburg, Germany
| | - Federica Alciato
- Department of Translational Medicine, Internal Medicine, University of Piemonte Orientale, Novara, Italy
| | - Miryam Carecchio
- Department of Translational Medicine, Neurology Unit, University of Piemonte Orientale, Novara, Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Roberto Cantello
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Department of Translational Medicine, Neurology Unit, University of Piemonte Orientale, Novara, Italy
| | - Mario Pirisi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Immuno-Rheumatology Unit, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Cristoforo Comi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Department of Translational Medicine, Neurology Unit, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
21
|
Zelentsova K, Talmi Z, Abboud-Jarrous G, Sapir T, Capucha T, Nassar M, Burstyn-Cohen T. Protein S Regulates Neural Stem Cell Quiescence and Neurogenesis. Stem Cells 2016; 35:679-693. [PMID: 27753164 DOI: 10.1002/stem.2522] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
Neurons are continuously produced in brains of adult mammalian organisms throughout life-a process tightly regulated to ensure a balanced homeostasis. In the adult brain, quiescent Neural Stem Cells (NSCs) residing in distinct niches engage in proliferation, to self-renew and to give rise to differentiated neurons and astrocytes. The mechanisms governing the intricate regulation of NSC quiescence and neuronal differentiation are not completely understood. Here, we report the expression of Protein S (PROS1) in adult NSCs, and show that genetic ablation of Pros1 in neural progenitors increased hippocampal NSC proliferation by 47%. We show that PROS1 regulates the balance of NSC quiescence and proliferation, also affecting daughter cell fate. We identified the PROS1-dependent downregulation of Notch1 signaling to correlate with NSC exit from quiescence. Notch1 and Hes5 mRNA levels were rescued by reintroducing Pros1 into NCS or by supplementation with purified PROS1, suggesting the regulation of Notch pathway by PROS1. Although Pros1-ablated NSCs show multilineage differentiation, we observed a 36% decrease in neurogenesis, coupled with a similar increase in astrogenesis, suggesting PROS1 is instructive for neurogenesis, and plays a role in fate determination, also seen in aged mice. Rescue experiments indicate PROS1 is secreted by NSCs and functions by a NSC-endogenous mechanism. Our study identifies a duple role for PROS1 in stem-cell quiescence and as a pro-neurogenic factor, and highlights a unique segregation of increased stem cell proliferation from enhanced neuronal differentiation, providing important insight into the regulation and control of NSC quiescence and differentiation. Stem Cells 2017;35:679-693.
Collapse
Affiliation(s)
- Katya Zelentsova
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Ziv Talmi
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Ghada Abboud-Jarrous
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Capucha
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Nassar
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Tal Burstyn-Cohen
- The Institute for Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
22
|
Sánchez-Hernández D, Anderson GH, Poon AN, Pannia E, Cho CE, Huot PS, Kubant R. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res 2016; 36:1045-1054. [DOI: 10.1016/j.nutres.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
23
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
24
|
Ji R, Meng L, Li Q, Lu Q. TAM receptor deficiency affects adult hippocampal neurogenesis. Metab Brain Dis 2015; 30:633-44. [PMID: 25487541 PMCID: PMC4414696 DOI: 10.1007/s11011-014-9636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
25
|
Vouri M, An Q, Birt M, Pilkington GJ, Hafizi S. Small molecule inhibition of Axl receptor tyrosine kinase potently suppresses multiple malignant properties of glioma cells. Oncotarget 2015; 6:16183-97. [PMID: 25980499 PMCID: PMC4599264 DOI: 10.18632/oncotarget.3952] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) often features a combination of tumour suppressor gene inactivation and multiple oncogene overactivation. The Axl receptor tyrosine kinase is found overexpressed in GBM and thought to contribute to invasiveness, chemoresistance and poor survival. Here, we have evaluated the effect of BGB324, a clinical candidate Axl-specific small molecule inhibitor, on the invasive behaviour of human GBM cells in vitro, as an indicator of its potential in GBM therapy and also to elucidate the role of Axl in GBM pathogenesis.Two cultured adult GBM cell lines, SNB-19 and UP007, were treated with Gas6 and/or BGB324, and analysed in assays for survival, 3D colony growth, motility, migration and invasion. Western blot was used to detect protein expression and signal protein phosphorylation. In both cell lines, BGB324 inhibited specifically phosphorylation of Axl as well as Akt kinase further downstream. BGB324 also inhibited survival and proliferation of both cell lines in a concentration-dependent manner, as well as completely suppressing migration and invasion. Furthermore, our results indicate co-operative activation between the Axl and Tyro3 receptors, as well as ligand-independent Axl signalling, to take place in GBM cells. In conclusion, small molecule inhibitor-led targeting of Axl may be a promising therapy for GBM progression.
Collapse
Affiliation(s)
- Mikaella Vouri
- 1 Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Qian An
- 1 Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Matthew Birt
- 1 Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Geoffrey J. Pilkington
- 1 Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Sassan Hafizi
- 1 Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
26
|
Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis. J Neurosci 2015; 34:16320-35. [PMID: 25471571 DOI: 10.1523/jneurosci.2449-14.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination.
Collapse
|
27
|
Ginisty A, Gély-Pernot A, Abaamrane L, Morel F, Arnault P, Coronas V, Benzakour O. Evidence for a Subventricular Zone Neural Stem Cell Phagocytic Activity Stimulated by the Vitamin K-Dependent Factor Protein S. Stem Cells 2015; 33:515-25. [DOI: 10.1002/stem.1862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Aurélie Ginisty
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| | - Aurore Gély-Pernot
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| | - Loubna Abaamrane
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| | - Franck Morel
- LITEC, EA 4331; University of Poitiers; Poitiers cedex 09 France
| | - Patricia Arnault
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| | - Valérie Coronas
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| | - Omar Benzakour
- CNRS ERL 7368; Signalisation et Transports Ioniques Membranaires, University of Poitiers; Poitiers cedex 09 France
| |
Collapse
|
28
|
Ji R, Meng L, Jiang X, CVM NK, Ding J, Li Q, Lu Q. TAM receptors support neural stem cell survival, proliferation and neuronal differentiation. PLoS One 2014; 9:e115140. [PMID: 25514676 PMCID: PMC4267817 DOI: 10.1371/journal.pone.0115140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022] Open
Abstract
Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
| | - Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Naresh Kumar CVM
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
| | - Jixiang Ding
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, Kentucky, 40202, United States of America
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, United States of America
| |
Collapse
|
29
|
Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also Glutamatergic [corrected] - and insulin-mediated neuronal processes. PLoS One 2014; 9:e113662. [PMID: 25423262 PMCID: PMC4244101 DOI: 10.1371/journal.pone.0113662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/27/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke.
Collapse
|
30
|
Hemmati AA, Houshmand G, Ghorbanzadeh B, Nemati M, Behmanesh MA. Topical vitamin K1 promotes repair of full thickness wound in rat. Indian J Pharmacol 2014; 46:409-12. [PMID: 25097279 PMCID: PMC4118534 DOI: 10.4103/0253-7613.135953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/01/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Application of vitamin K to the skin has been used for suppression of pigmentation and resolution of bruising. However, in rats, no study was reported on its effect regarding wound healing. Thus, the present study was designed to examine the healing effects of creams prepared from vitamin K1 on full-thickness wound in rats. MATERIALS AND METHODS For inducing full-thickness wound in rats, the excisional wound model was used. Five groups consisting of 8 rats each were used. Vitamin K cream (1% and 2%, w/w) was prepared in eucerin base and applied on the wound once a day until complete healing had occurred. Healing was defined by decreased wound margin (wound contraction), re-epithelialization, tensile strength and hydroxyproline content. Histopathological examination was also done. RESULTS The effects produced by the topical vitamin K showed significant (P < 0.01) healing when compared with control group in parameters such as wound contraction, epithelialization period, hydroxyproline content and tensile strength. Histopathological studies also showed improvement with vitamin K. CONCLUSIONS Topical vitamin K demonstrates wound healing potential in full-thickness wound model.
Collapse
Affiliation(s)
- Ali Asghar Hemmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Nemati
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
31
|
Ji R, Tian S, Lu HJ, Lu Q, Zheng Y, Wang X, Ding J, Li Q, Lu Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:6165-77. [PMID: 24244024 DOI: 10.4049/jimmunol.1302229] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 2013; 62:339-51. [PMID: 23357108 DOI: 10.1053/j.ajkd.2012.11.051] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|