1
|
Kita K, Morkos C, Nolan K. Maintenance of stem cell self-renewal by sex chromosomal zinc-finger transcription factors. World J Methodol 2024; 14:97664. [DOI: 10.5662/wjm.v14.i4.97664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/26/2024] Open
Abstract
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX. This fact implies that there are some differential roles between ZFX and ZFY in regulating the maintenance of self-renewal activity in stem cells. Besides the maintenance of stemness, ZFX overexpression or mutations may be linked to certain cancers. Although cancers and stem cells are double-edged swords, there is no study showing the link between ZFX activity and the telomere. Thus, stemness or cancers with ZFX may be linked to other molecules, such as Oct4, Sox2, Klf4, and others. Based on very recent studies and a few lines of evidence in the past decade, it appears that the ZFX is linked to the canonical Wnt signaling, which is one possible mechanism to explain the role of ZFX in the self-renewal of stem cells.
Collapse
Affiliation(s)
- Katsuhiro Kita
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Celine Morkos
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Kathleen Nolan
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| |
Collapse
|
2
|
Hsu E, Hutchison K, Liu Y, Nicolet CM, Schreiner S, Zemke N, Farnham P. Reduction of ZFX levels decreases histone H4 acetylation and increases Pol2 pausing at target promoters. Nucleic Acids Res 2024; 52:6850-6865. [PMID: 38726870 PMCID: PMC11229363 DOI: 10.1093/nar/gkae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.
Collapse
Affiliation(s)
- Emily Hsu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Katherine Hutchison
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Liu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Zhao C, Guo Y, Chen Y, Shang G, Song D, Wang J, Yang J, Zhang H. Zinc finger Protein207 orchestrates glioma migration through regulation of epithelial-mesenchymal transition. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38591780 DOI: 10.1002/tox.24271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Glioma represents the predominant primary malignant brain tumor. For several years, molecular profiling has been instrumental in the management and therapeutic stratification of glioma, providing a deeper understanding of its biological complexity. Accumulating evidence unveils the putative involvement of zinc finger proteins (ZNFs) in cancer. This study aimed to elucidate the role and significance of ZNF207 in glioma. METHODS Utilizing online data such as The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx) project, the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA) databases, in conjunction with bioinformatics methodologies including GO, KEGG, GSEA, CIBERSORT immune cell infiltration estimation, and protein-protein interaction (PPI) analysis, enabled a comprehensive exploration of ZNF207's involvement in gliomagenesis. Immunohistochemistry and RT-PCR techniques were employed to validate the expression level of ZNF207 in glioma samples. Subsequently, the biological effects of ZNF207 on glioma cells were explored through in vitro assays. RESULTS Our results demonstrate elevated expression of ZNF207 in gliomas, correlating with unfavorable patient outcomes. Stratification analyses were used to delineate the prognostic efficacy of ZNF207 in glioma with different clinicopathological characteristics. Immunocorrelation analysis revealed a significant association between ZNF207 expression and the infiltration levels of T helper cells, macrophages, and natural killer (NK) cells. Utilizing ZNF207 expression and clinical features, we constructed an OS prediction model and displayed well discrimination with a C-index of 0.861. Moreover, the strategic silencing of ZNF207 attenuated glioma cell advancement, evidenced by diminished cellular proliferation, weakened cell tumorigenesis, augmented apoptotic activity, and curtailed migratory capacity alongside the inhibition of the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS ZNF207 may identify as a prospective biomarker and therapeutic candidate for glioma prevention, providing valuable insights into understanding glioma pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guanjie Shang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Dixiang Song
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yang Z, Wu H, Dai D, Yuan Y, Shao X. ZNF692 Promotes the Progression of Colon Adenocarcinoma by Regulating HSF4 Expression. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2601-2610. [PMID: 38435777 PMCID: PMC10903307 DOI: 10.18502/ijph.v52i12.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 03/05/2024]
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common cancer happened in gastrointestinal tract, with the overall incidence rate of 4%-5% among human beings. Like most malignancies, we uncovered the exact mechanisms of the pathogenesis of colorectal cancer yet. Therefore, there is an urgent need to explore the molecules that can be used as diagnostic maker at early stage. In addition, we also need to define the essential factors that related to the prognosis and treatment of the colon carcinoma. Methods The study was conducted at the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China in September 2020. The R language was used to identify the differentially expressed genes. We performed receiver operating characteristic curve analysis to determine the diagnostic markers for COAD. The machine learning strategy was used to assess the effectiveness of genes in the diagnosis of COAD. The molecular mechanism and prognostic value of genes were explored by bioinformatics analysis and molecular experiments. Results The expression level of heat shock factor 4 (HSF4) was significantly elevated in COAD patients (P=1.89×10-29), according to The Cancer Genome Atlas (TCGA) database. Additionally, survival analysis showed the higher expression level of the HSF4 was correlated with the poor prognosis in COAD. Conclusion The HSF4 was the target gene of zinc finger protein 692(ZNF692). HSF4 might promote the progression of COAD through the apoptosis pathway. It was diagnostic and prognosis maker of COAD. Furthermore, the upstream gene of HSF4, ZNF692, promotes the progression of colorectal cancer by regulating HSF4 expression.
Collapse
Affiliation(s)
- Zhengpeng Yang
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Hao Wu
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Defu Dai
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Yufeng Yuan
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Xueqian Shao
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| |
Collapse
|
5
|
Zhang X, Wang Y, Lu J, Xiao L, Chen H, Li Q, Li YY, Xu P, Ruan C, Zhou H, Zhao Y. A conserved ZFX/WNT3 axis modulates the growth and imatinib response of chronic myeloid leukemia stem/progenitor cells. Cell Mol Biol Lett 2023; 28:83. [PMID: 37864206 PMCID: PMC10589942 DOI: 10.1186/s11658-023-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Zinc finger protein X-linked (ZFX) has been shown to promote the growth of tumor cells, including leukemic cells. However, the role of ZFX in the growth and drug response of chronic myeloid leukemia (CML) stem/progenitor cells remains unclear. METHODS Real-time quantitative PCR (RT-qPCR) and immunofluorescence were used to analyze the expression of ZFX and WNT3 in CML CD34+ cells compared with normal control cells. Short hairpin RNAs (shRNAs) and clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) technologies were used to study the role of ZFX in growth and drug response of CML cells. Microarray data were generated to compare ZFX-silenced CML CD34+ cells with their controls. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to study the molecular mechanisms of ZFX to regulate WNT3 expression. RT-qPCR and western blotting were used to study the effect of ZFX on β-catenin signaling. RESULTS We showed that ZFX expression was significantly higher in CML CD34+ cells than in control cells. Overexpression and gene silencing experiments indicated that ZFX promoted the in vitro growth of CML cells, conferred imatinib mesylate (IM) resistance to these cells, and enhanced BCR/ABL-induced malignant transformation. Microarray data and subsequent validation revealed that WNT3 transcription was conservatively regulated by ZFX. WNT3 was highly expressed in CML CD34+ cells, and WNT3 regulated the growth and IM response of these cells similarly to ZFX. Moreover, WNT3 overexpression partially rescued ZFX silencing-induced growth inhibition and IM hypersensitivity. ZFX silencing decreased WNT3/β-catenin signaling, including c-MYC and CCND1 expression. CONCLUSION The present study identified a novel ZFX/WNT3 axis that modulates the growth and IM response of CML stem/progenitor cells.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/metabolism
- beta Catenin/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Stem Cells/metabolism
- Signal Transduction
- Drug Resistance, Neoplasm/genetics
- Neoplastic Stem Cells/metabolism
- Wnt3 Protein/metabolism
- Wnt3 Protein/pharmacology
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yu Wang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Chen
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Peng Xu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China
| | - Haixia Zhou
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| |
Collapse
|
6
|
Sun MA, Yang R, Liu H, Wang W, Song X, Hu B, Reynolds N, Roso K, Chen LH, Greer PK, Keir ST, McLendon RE, Cheng SY, Bigner DD, Ashley DM, Pirozzi CJ, He Y. Repurposing Clemastine to Target Glioblastoma Cell Stemness. Cancers (Basel) 2023; 15:4619. [PMID: 37760589 PMCID: PMC10526458 DOI: 10.3390/cancers15184619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.
Collapse
Affiliation(s)
- Michael A. Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Heng Liu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Wenzhe Wang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Nathan Reynolds
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lee H. Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K. Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen T. Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Roger E. McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Darell D. Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher J. Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Zinghirino F, Pappalardo XG, Messina A, Nicosia G, De Pinto V, Guarino F. VDAC Genes Expression and Regulation in Mammals. Front Physiol 2021; 12:708695. [PMID: 34421651 PMCID: PMC8374620 DOI: 10.3389/fphys.2021.708695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
VDACs are pore-forming proteins, coating the mitochondrial outer membrane, and playing the role of main regulators for metabolites exchange between cytosol and mitochondria. In mammals, three isoforms have evolutionary originated, VDAC1, VDAC2, and VDAC3. Despite similarity in sequence and structure, evidence suggests different biological roles in normal and pathological conditions for each isoform. We compared Homo sapiens and Mus musculus VDAC genes and their regulatory elements. RNA-seq transcriptome analysis shows that VDAC isoforms are expressed in human and mouse tissues at different levels with a predominance of VDAC1 and VDAC2 over VDAC3, with the exception of reproductive system. Numerous transcript variants for each isoform suggest specific context-dependent regulatory mechanisms. Analysis of VDAC core promoters has highlighted that, both in a human and a mouse, VDAC genes show features of TATA-less ones. The level of CG methylation of the human VDAC genes revealed that VDAC1 promoter is less methylated than other two isoforms. We found that expression of VDAC genes is mainly regulated by transcription factors involved in controlling cell growth, proliferation and differentiation, apoptosis, and bioenergetic metabolism. A non-canonical initiation site termed "the TCT/TOP motif," the target for translation regulation by the mTOR pathway, was identified in human VDAC2 and VDAC3 and in every murine VDACs promoter. In addition, specific TFBSs have been identified in each VDAC promoter, supporting the hypothesis that there is a partial functional divergence. These data corroborate our experimental results and reinforce the idea that gene regulation could be the key to understanding the evolutionary specialization of VDAC isoforms.
Collapse
Affiliation(s)
- Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| |
Collapse
|
9
|
Is the secret of VDAC Isoforms in their gene regulation? Characterization of human VDAC genes expression profile, promoter activity, and transcriptional regulators. Int J Mol Sci 2020; 21:ijms21197388. [PMID: 33036380 PMCID: PMC7582299 DOI: 10.3390/ijms21197388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
VDACs (voltage-dependent anion-selective channels) are pore-forming proteins of the outer mitochondrial membrane, whose permeability is primarily due to VDACs’ presence. In higher eukaryotes, three isoforms are raised during the evolution: they have the same exon–intron organization, and the proteins show the same channel-forming activity. We provide a comprehensive analysis of the three human VDAC genes (VDAC1–3), their expression profiles, promoter activity, and potential transcriptional regulators. VDAC isoforms are broadly but also specifically expressed in various human tissues at different levels, with a predominance of VDAC1 and VDAC2 over VDAC3. However, an RNA-seq cap analysis gene expression (CAGE) approach revealed a higher level of transcription activation of VDAC3 gene. We experimentally confirmed this information by reporter assay of VDACs promoter activity. Transcription factor binding sites (TFBSs) distribution in the promoters were investigated. The main regulators common to the three VDAC genes were identified as E2F-myc activator/cell cycle (E2FF), Nuclear respiratory factor 1 (NRF1), Krueppel-like transcription factors (KLFS), E-box binding factors (EBOX) transcription factor family members. All of them are involved in cell cycle and growth, proliferation, differentiation, apoptosis, and metabolism. More transcription factors specific for each VDAC gene isoform were identified, supporting the results in the literature, indicating a general role of VDAC1, as an actor of apoptosis for VDAC2, and the involvement in sex determination and development of VDAC3. For the first time, we propose a comparative analysis of human VDAC promoters to investigate their specific biological functions. Bioinformatics and experimental results confirm the essential role of the VDAC protein family in mitochondrial functionality. Moreover, insights about a specialized function and different regulation mechanisms arise for the three isoform gene.
Collapse
|
10
|
Balogh A, Reiniger L, Hetey S, Kiraly P, Toth E, Karaszi K, Juhasz K, Gelencser Z, Zvara A, Szilagyi A, Puskas LG, Matko J, Papp Z, Kovalszky I, Juhasz C, Than NG. Decreased Expression of ZNF554 in Gliomas is Associated with the Activation of Tumor Pathways and Shorter Patient Survival. Int J Mol Sci 2020; 21:E5762. [PMID: 32796700 PMCID: PMC7461028 DOI: 10.3390/ijms21165762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Lilla Reiniger
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Szabolcs Hetey
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Katalin Karaszi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Agnes Zvara
- Laboratory of Functional Genomics, Department of Genetics, Biological Research Centre, H-6726 Szeged, Hungary; (A.Z.); (L.G.P.)
| | - Andras Szilagyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Laszlo G. Puskas
- Laboratory of Functional Genomics, Department of Genetics, Biological Research Centre, H-6726 Szeged, Hungary; (A.Z.); (L.G.P.)
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, H-1117 Budapest, Hungary;
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary;
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Csaba Juhasz
- Department of Pediatrics, Neurology, Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
- Maternity Private Clinic, H-1126 Budapest, Hungary;
| |
Collapse
|
11
|
Evolutionary-driven C-MYC gene expression in mammalian fibroblasts. Sci Rep 2020; 10:11056. [PMID: 32632086 PMCID: PMC7338511 DOI: 10.1038/s41598-020-67391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.
Collapse
|
12
|
Ni W, Perez AA, Schreiner S, Nicolet CM, Farnham P. Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Res 2020; 48:5986-6000. [PMID: 32406922 PMCID: PMC7293018 DOI: 10.1093/nar/gkaa384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
Our study focuses on a family of ubiquitously expressed human C2H2 zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11-13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C2H2 zinc finger proteins.
Collapse
Affiliation(s)
- Weiya Ni
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Xing Y, Ren S, Ai L, Sun W, Zhao Z, Jiang F, Zhu Y, Piao D. ZNF692 promotes colon adenocarcinoma cell growth and metastasis by activating the PI3K/AKT pathway. Int J Oncol 2019; 54:1691-1703. [PMID: 30816443 PMCID: PMC6439975 DOI: 10.3892/ijo.2019.4733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Despite considerable recent advancements in colorectal cancer (CRC) therapy, the prognosis of patients with advanced disease remains poor. Further understanding of the molecular mechanisms and treatment strategies of this disease is required. Zinc finger protein 692 (ZNF692), also known as AREBP and Zfp692, was first reported to have an important role in gluconeogenesis. A recent study demonstrated that ZNF692 is overexpressed in lung adenocarcinoma (LUAD) tissues and that ZNF692 knockdown inhibited LUAD cell proliferation, migration, and invasion both in vitro and in vivo. However, the role of ZNF692 in colon adenocarcinoma (COAD) remains unclear. The present study revealed that ZNF692 was upregulated in COAD tissues and cells and that high ZNF692 expression was significantly correlated with lymph node metastasis, distant metastasis and tumor stage in COAD patients. Gain‑ and loss‑of‑function experiments were employed to identify the function of ZNF692 in COAD progression. In vitro and in vivo assays revealed that ZNF692 promoted COAD cell proliferation, migration and invasion. Furthermore, western blot analysis demonstrated that the effects of ZNF692 were mediated by upregulating cyclin D1, cyclin‑dependent kinase 2 (CDK2) and matrix metalloproteinase‑9 (MMP‑9) and by downregulating p27Kip1 through the phosphoinositide 3‑kinase/AKT signaling pathway. Collectively, these data indicated that ZNF692 may serve as a novel oncogene and a potential treatment target in COAD patients.
Collapse
Affiliation(s)
- Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Shuo Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Lianjie Ai
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Weidong Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Zhiwei Zhao
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Fengqi Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001
| |
Collapse
|
14
|
Pourkeramati F, Asadi MH, Shakeri S, Farsinejad A. Differential Expression Profile of ZFX Variants Discriminates Breast Cancer Subtypes. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 29753316 PMCID: PMC6305825 DOI: 10.29252/.23.1.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background ZFX is a transcriptional regulator in embryonic stem cells and plays an important role in pluripotency and self-renewal. ZFX is widely expressed in pluripotent stem cells and is down-regulated during differentiation of embryonic stem cells. ZFX has five different variants that encode three different protein isoforms. While several reports have determined the overexpression of ZFX in a variety of somatic cancers, the expression of ZFX-spliced variants in cancer cells is not well-understood. Methods We investigated the expression of ZFX variants in a series of breast cancer tissues and cell lines using quantitative PCR. Results The expression of ZFX variant 1/3 was higher in tumor tissue compared to marginal tissue. In contrast, the ZFX variant 5 was down-regulated in tumor tissues. While the ZFX variant 1/3 and ZFX variant 5 expression significantly increased in low-grade tumors, ZFX variant 4 was strongly expressed in high-grade tumors, demonstrating lymphatic invasion. In addition, our result revealed a significant association between the HER2 status and the expression of ZFX-spliced variants. Conclusion Our data suggest that the expression of ZFX-spliced transcripts varies between different types of breast cancer and may contribute to their tumorigenesis process. Hence, ZFX-spliced transcripts could be considered as novel tumor markers with a probable value in diagnosis, prognosis, and therapy of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Pourkeramati
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran,Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran,Corresponding Author: Malek Hossein Asadi Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran; Tel.: (+98-342) 6233196; E-mail:
| | - Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Smith-Raska MR, Arenzana TL, D'Cruz LM, Khodadadi-Jamayran A, Tsirigos A, Goldrath AW, Reizis B. The Transcription Factor Zfx Regulates Peripheral T Cell Self-Renewal and Proliferation. Front Immunol 2018; 9:1482. [PMID: 30022979 PMCID: PMC6039547 DOI: 10.3389/fimmu.2018.01482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/14/2018] [Indexed: 12/02/2022] Open
Abstract
Peripheral T lymphocytes share many functional properties with hematopoietic stem cells (HSCs), including long-term maintenance, quiescence, and latent proliferative potential. In addition, peripheral T cells retain the capacity for further differentiation into a variety of subsets, much like HSCs. While the similarities between T cells and HSC have long been hypothesized, the potential common genetic regulation of HSCs and T cells has not been widely explored. We have studied the T cell-intrinsic role of Zfx, a transcription factor specifically required for HSC maintenance. We report that T cell-specific deletion of Zfx caused age-dependent depletion of naïve peripheral T cells. Zfx-deficient T cells also failed to undergo homeostatic proliferation in a lymphopenic environment, and showed impaired antigen-specific expansion and memory response. In addition, the invariant natural killer T cell compartment was severely reduced. RNA-Seq analysis revealed that the most dysregulated genes in Zfx-deficient T cells were similar to those observed in Zfx-deficient HSC and B cells. These studies identify Zfx as an important regulator of peripheral T cell maintenance and expansion and highlight the common molecular basis of HSC and lymphocyte homeostasis.
Collapse
Affiliation(s)
- Matthew R Smith-Raska
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Teresita L Arenzana
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Louise M D'Cruz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Rhie SK, Yao L, Luo Z, Witt H, Schreiner S, Guo Y, Perez AA, Farnham PJ. ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream from transcription start sites at the majority of CpG island promoters. Genome Res 2018; 28:310-320. [PMID: 29429977 PMCID: PMC5848610 DOI: 10.1101/gr.228809.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/26/2018] [Indexed: 12/29/2022]
Abstract
High expression of the transcription factor ZFX is correlated with proliferation, tumorigenesis, and patient survival in multiple types of human cancers. However, the mechanism by which ZFX influences transcriptional regulation has not been determined. We performed ChIP-seq in four cancer cell lines (representing kidney, colon, prostate, and breast cancers) to identify ZFX binding sites throughout the human genome. We identified roughly 9000 ZFX binding sites and found that most of the sites are in CpG island promoters. Moreover, genes with promoters bound by ZFX are expressed at higher levels than genes with promoters not bound by ZFX. To determine if ZFX contributes to regulation of the promoters to which it is bound, we performed RNA-seq analysis after knockdown of ZFX by siRNA in prostate and breast cancer cells. Many genes with promoters bound by ZFX were down-regulated upon ZFX knockdown, supporting the hypothesis that ZFX acts as a transcriptional activator. Surprisingly, ZFX binds at +240 bp downstream from the TSS of the responsive promoters. Using Nucleosome Occupancy and Methylome Sequencing (NOMe-seq), we show that ZFX binds between the open chromatin region at the TSS and the first downstream nucleosome, suggesting that ZFX may play a critical role in promoter architecture. We have also shown that a closely related zinc finger protein ZNF711 has a similar binding pattern at CpG island promoters, but ZNF711 may play a subordinate role to ZFX. This functional characterization of ZFX provides important new insights into transcription, chromatin structure, and the regulation of the cancer transcriptome.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Lijun Yao
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Zhifei Luo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Heather Witt
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Yu Guo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Mallik MK. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network. J Theor Biol 2018; 438:78-91. [DOI: 10.1016/j.jtbi.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023]
|
18
|
Yan X, Shan Z, Yan L, Zhu Q, Liu L, Xu B, Liu S, Jin Z, Gao Y. High expression of Zinc-finger protein X-linked promotes tumor growth and predicts a poor outcome for stage II/III colorectal cancer patients. Oncotarget 2017; 7:19680-92. [PMID: 26967242 PMCID: PMC4991411 DOI: 10.18632/oncotarget.7547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
Zinc-finger protein X-linked (ZFX) was recently identified as a novel oncoprotein in several human malignancies. In this study, we examined the correlation between ZFX expression and the clinical characteristics of stage II/III CRC patients, as well as the molecular mechanism by which ZFX apparently contributes to CRC tumor progression. Using immunohistochemistry, we detected expression of ZFX in CRC tissues collected from stage II/III patients and determined that its expression correlated with tumor differentiation and stage. Survival analysis indicated that patients with high ZFX expression had poorer overall and disease-free survival. ZFX knockdown in SW620 and SW480 CRC cells significantly inhibited cell proliferation and colony formation, enhanced apoptosis and induced cell cycle arrest. It also enhanced the sensitivity of CRC cells to 5-Fu. In a xenograft model, ZFX knockdown suppressed in vivo CRC tumor growth. Microarray analysis revealed the primary target of ZFX to be DUSP5. Whereas ZFX knockdown increased DUSP5 expression, DUSP5 knockdown rescued ZFX-mediated cell proliferation in ZFX knockdown cells. These findings demonstrate that ZFX promotes CRC progression by suppressing DUSP5 expression and suggest that ZFX is a novel prognostic biomarker and potentially useful therapeutic target in stage II/III CRC patients.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zezhi Shan
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Leilei Yan
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qingchao Zhu
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Liguo Liu
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Bing Xu
- Department of Medicine, Soochow University, Suzhou, Jiangsu Province, China
| | - Sihong Liu
- Department of Medicine, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhiming Jin
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Gao
- Center for Reproductive Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Wang X, Huang Z, Wu Q, Prager BC, Mack SC, Yang K, Kim LJY, Gimple RC, Shi Y, Lai S, Xie Q, Miller TE, Hubert CG, Song A, Dong Z, Zhou W, Fang X, Zhu Z, Mahadev V, Bao S, Rich JN. MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor-Initiating Cells. Cancer Res 2017; 77:4947-4960. [PMID: 28729418 PMCID: PMC5600855 DOI: 10.1158/0008-5472.can-17-0114] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/11/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022]
Abstract
Metabolic dysregulation drives tumor initiation in a subset of glioblastomas harboring isocitrate dehydrogenase (IDH) mutations, but metabolic alterations in glioblastomas with wild-type IDH are poorly understood. MYC promotes metabolic reprogramming in cancer, but targeting MYC has proven notoriously challenging. Here, we link metabolic dysregulation in patient-derived brain tumor-initiating cells (BTIC) to a nexus between MYC and mevalonate signaling, which can be inhibited by statin or 6-fluoromevalonate treatment. BTICs preferentially express mevalonate pathway enzymes, which we find regulated by novel MYC-binding sites, validating an additional transcriptional activation role of MYC in cancer metabolism. Targeting mevalonate activity attenuated RAS-ERK-dependent BTIC growth and self-renewal. In turn, mevalonate created a positive feed-forward loop to activate MYC signaling via induction of miR-33b. Collectively, our results argue that MYC mediates its oncogenic effects in part by altering mevalonate metabolism in glioma cells, suggesting a therapeutic strategy in this setting. Cancer Res; 77(18); 4947-60. ©2017 AACR.
Collapse
Affiliation(s)
- Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Kailin Yang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Leo J Y Kim
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Ryan C Gimple
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sisi Lai
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Tyler E Miller
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anne Song
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Zhen Dong
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Vaidehi Mahadev
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, California
| |
Collapse
|
20
|
Cheng ZX, Yin WB, Wang ZY. MicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma. Int J Mol Med 2017; 40:1307-1314. [PMID: 28901390 PMCID: PMC5627876 DOI: 10.3892/ijmm.2017.3124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
The prognosis of patients suffering from glioblastoma [also referred to as glioblastoma multiforme (GBM)] is dismal despite multimodal therapy. Chemotherapy with temozolomide may suppress tumor growth for a certain period of time (a few months); however, invariable tumor recurrence suggests that glioblastoma initiating cells (GICs) render these tumors persistant. Thus, the understanding of the molecular mechanisms of action of GICs as regards their role in the progression of GBM is important as such knowledge will be helpful in the discovery of novel drug targets, as well as in the design of novel therapeutic strategies for more effective treatment of the disease. In this study, we found that tumor suppressor candidate 3 (TUSC3) was downregulated in temozolomide-resistant U87MG cells (U87MG-res cells) and its restoration sensitized U87MG-res cells to temozolomide. TUSC3 was able to inhibit the formation of GIC phenotypes in the U87MG-res cells. The overexpression of microRNA (miR)-132 inhibited TUSC3 protein expression in the U87MG cells. However, its overexpression did not degrade TUSC3 mRNA expression in the cells. miR-132 was upregulated in the U87MG-res cells and its overexpression induced temozolomide resistance and the formation of cancer stem cell phenotypes in the U87MG cells. Thus, our data indicate that miR-132 induces temozolo-mide resistance and promotes the formation of cancer stem cell phenotypes by targeting TUSC3 in glioblastoma.
Collapse
Affiliation(s)
- Zhen-Xiu Cheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Wen-Bo Yin
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Zhong-Yu Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
21
|
Izumi D, Ishimoto T, Miyake K, Eto T, Arima K, Kiyozumi Y, Uchihara T, Kurashige J, Iwatsuki M, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Goel A, Tan P, Baba H. Colorectal Cancer Stem Cells Acquire Chemoresistance Through the Upregulation of F-Box/WD Repeat-Containing Protein 7 and the Consequent Degradation of c-Myc. Stem Cells 2017; 35:2027-2036. [PMID: 28699179 DOI: 10.1002/stem.2668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 06/04/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022]
Abstract
The cancer stem cell (CSC) paradigm suggests that tumors are organized hierarchically. Chugai previously established an LGR5+ human colorectal cancer (CRC) stem-cell-enriched cell line (colorectal CSCs) that expresses well-accepted colorectal CSC markers and that can dynamically switch between proliferative and drug-resistant noncycling states. We performed this study to elucidate the molecular mechanisms responsible for evading cell death in colorectal CSCs mediated by anticancer agents. During the cell cycle arrest caused by anticancer agents, we found that c-Myc expression was substantially decreased in colorectal CSCs. The c-Myc expression alterations were mediated by upregulation of F-box/WD repeat-containing protein 7 (FBXW7), as evidenced through FBXW7-small interfering RNA knockdown experiments that resulted in enhanced cell sensitivity to anticancer agents. Upregulation of FBXW7 following drug treatment was not evident in commercially available cancer cell lines. Colorectal CSCs were induced to differentiation by Matrigel and fetal bovine serum. Differentiated CSCs treated with anticancer agents did not show upregulation of FBXW7 and were more sensitive to irinotecan (CPT-11), highlighting the potential CSC-specific nature of our data. The FBXW7 over-expression was further validated in resected liver metastatic sites in CRC patients after chemotherapy. In conclusion, our study revealed that a CSC-specific FBXW7-regulatory mechanism is strongly associated with resistance to chemotherapeutic agents. Inhibition of FBXW7-upregulation in CSCs following chemotherapy may enhance the response to anticancer agents and represents an attractive strategy for the elimination of colorectal CSCs. Stem Cells 2017;35:2027-2036.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas, USA
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsugio Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastroenterological Surgery, The Cancer Institute Hospital of JCFR, Tokyo, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas, USA
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Wang C, Fu S, Wang M, Yu W, Cui Q, Wang H, Huang H, Dong W, Zhang W, Li P, Lin C, Pan Z, Yang Y, Wu M, Zhou W. Zinc finger protein X-linked promotes expansion of EpCAM + cancer stem-like cells in hepatocellular carcinoma. Mol Oncol 2017; 11:455-469. [PMID: 28156061 PMCID: PMC5527465 DOI: 10.1002/1878-0261.12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is frequently upregulated in multiple human malignancies and also plays a critical role in the maintenance of self-renewal in embryonic stem cells. However, the role of ZFX in liver cancer stem cells (CSCs) remains obscure. We observed that the elevated expression of both ZFX and epithelial cell adhesion molecule (EpCAM) was associated with aggressive clinicopathological features and indicated poor prognosis in patients with hepatocellular carcinoma (HCC). ZFX was commonly enriched in liver EpCAM+ CSCs. Knockdown of ZFX decreased the proportion of EpCAM+ CSCs in HCC cells and suppressed their expression of stemness-related genes, self-renewal capacity, chemoresistance, metastatic potential, and tumorigenicity. Conversely, upregulation of ZFX in CSCs rescued these inhibitory effects and enhanced stem-like properties. Mechanistically, depletion of ZFX reduced nuclear translocation and transactivation of β-catenin, thereby inhibiting the self-renewal capacity of EpCAM+ CSCs. Moreover, knockdown of β-catenin attenuated the self-renewal of EpCAM+ HCC cells stably expressing ZFX, further indicating that β-catenin is required for ZFX-mediated expansion and maintenance of EpCAM+ CSCs. Taken together, our findings indicate that ZFX activates and maintains EpCAM+ liver CSCs by promoting nuclear translocation and transactivation of β-catenin. Furthermore, combination of ZFX and EpCAM may serve as a significant indicator for prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chao Wang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
- Department of UrologyChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Si‐yuan Fu
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ming‐da Wang
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wen‐bo Yu
- The Second Military Medical UniversityShanghaiChina
| | - Qin‐shu Cui
- The Second Military Medical UniversityShanghaiChina
| | - Hong‐ru Wang
- The Second Military Medical UniversityShanghaiChina
| | - Hai Huang
- Department of Urinary SurgeryChangzheng HospitalSecond Military Medical UniversityShanghaiChina
| | | | - Wei‐wei Zhang
- Department of Laboratory DiagnosticChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Peng‐peng Li
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Chuan Lin
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ze‐ya Pan
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Yuan Yang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Meng‐chao Wu
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wei‐ping Zhou
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
23
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
24
|
Wang X, Yang K, Xie Q, Wu Q, Mack SC, Shi Y, Kim LJY, Prager BC, Flavahan WA, Liu X, Singer M, Hubert CG, Miller TE, Zhou W, Huang Z, Fang X, Regev A, Suvà ML, Hwang TH, Locasale JW, Bao S, Rich JN. Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nat Neurosci 2017; 20:661-673. [PMID: 28346452 DOI: 10.1038/nn.4537] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.
Collapse
Affiliation(s)
- Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Kailin Yang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, and The Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Leo J Y Kim
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - William A Flavahan
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Meromit Singer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Tyler E Miller
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mario L Suvà
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, Chen C, Xie Q, Mack SC, Wang X, Carcaboso AM, Sloan AE, Ouyang G, McLendon RE, Bian XW, Rich JN, Bao S. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med 2016; 214:245-267. [PMID: 27923907 PMCID: PMC5206492 DOI: 10.1084/jem.20151673] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/20/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Fang et al. show that the deubiquitinase USP13 stabilizes c-Myc in glioblastoma stem cells (GSCs) by counteracting FBXL14-mediated Myc ubiquitination. c-Myc stabilization maintains GSC self-renewal and tumorigenic potential. Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A–c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc.
Collapse
Affiliation(s)
- Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Kailin Yang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Cong Chen
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Fundacio Sant Joan de Deu, 08950 Barcelona, Spain
| | - Andrew E Sloan
- Department of Neurological Surgery, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Gaoliang Ouyang
- The State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Roger E McLendon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
26
|
Wu J, Xiao L, Zhou H, Liu H, Ge Y, Yang J, Li Y, Wu D, Zhao Y, Zhang X. ZFX modulates the growth of human leukemic cells via B4GALT1. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1120-1127. [PMID: 27797721 DOI: 10.1093/abbs/gmw109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/04/2016] [Indexed: 11/14/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is a key regulator of both embryonic stem cells (ESCs) and hematopoietic stem cells (HSCs), which is required for both Notch intracellular domain (NotchIC)-induced acute T-cell leukemia and MLL-AF9-induced myeloid leukemia in mouse models. However, the role of ZFX and its underlying mechanism in human leukemic cells remain unclear yet, though accumulating data have demonstrated that ZFX is aberrantly expressed in various human tumors and plays an important role. Herein, we found that ZFX was aberrantly expressed in various human leukemic cell lines and primary cells from leukemia patients compared with control cells. The silence of ZFX led to the growth suppression through either the deregulated cell cycle or the induction of apoptosis in various cells including K562, Jurkat, Namalwa, and THP-1 cells. The gene expression analysis revealed that UDP-Gal:βGlcNAc β 1,4-galactosyltransferase, polypeptide 1 (B4GALT1) was significantly down-regulated upon ZFX silencing, which is implicated in the response of K562 cells to the treatment of imatinib mesylate (IM). In addition, lectin blot assay showed that the galactosylation of glycoproteins in K562 cells was suppressed upon ZFX silencing. Interestingly, overexpression of B4GALT1 restored the growth and conferred drug resistance to ZFX-silenced cells. Taken together, we have demonstrated that ZFX is aberrantly expressed in multiple human leukemic cells and it modulates the growth and drug response of leukemic cells partially via B4GALT1, which suggests that ZFX is a new regulator of leukemic cells and warrants intensive investigations on this 'stemness' regulator in these deadly diseases.
Collapse
Affiliation(s)
- Jie Wu
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Lun Xiao
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Haixia Zhou
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
| | - Hong Liu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
| | - Yue Ge
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Jing Yang
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Yuanyuan Li
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Depei Wu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| | - Yun Zhao
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| |
Collapse
|
27
|
Xu S, Duan P, Li J, Senkowski T, Guo F, Chen H, Romero A, Cui Y, Liu J, Jiang SW. Zinc Finger and X-Linked Factor (ZFX) Binds to Human SET Transcript 2 Promoter and Transactivates SET Expression. Int J Mol Sci 2016; 17:ijms17101737. [PMID: 27775603 PMCID: PMC5085766 DOI: 10.3390/ijms17101737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 02/05/2023] Open
Abstract
SET (SE Translocation) protein carries out multiple functions including those for protein phosphatase 2A (PP2A) inhibition, histone modification, DNA repair, and gene regulation. SET overexpression has been detected in brain neurons of patients suffering Alzheimer's disease, follicle theca cells of Polycystic Ovary Syndrome (PCOS) patients, and ovarian cancer cells, indicating that SET may play a pathological role for these disorders. SET transcript 2, produced by a specific promoter, represents a major transcript variant in different cell types. In this study, we characterized the transcriptional activation of human SET transcript 2 promoter in HeLa cells. Promoter deletion experiments and co-transfection assays indicated that ZFX, the Zinc finger and X-linked transcription factor, was able to transactivate the SET promoter. A proximal promoter region containing four ZFX-binding sites was found to be critical for the ZFX-mediated transactivation. Mutagenesis study indicated that the ZFX-binding site located the closest to the transcription start site accounted for most of the ZFX-mediated transactivity. Manipulation of ZFX levels by overexpression or siRNA knockdown confirmed the significance and specificity of the ZFX-mediated SET promoter activation. Chromatin immunoprecipitation results verified the binding of ZFX to its cognate sites in the SET promoter. These findings have led to identification of ZFX as an upstream factor regulating SET gene expression. More studies are required to define the in vivo significance of this mechanism, and specifically, its implication for several benign and malignant diseases related to SET dysregulation.
Collapse
Affiliation(s)
- Siliang Xu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Tristan Senkowski
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Fengbiao Guo
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515000, China.
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515000, China.
| | - Alberto Romero
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
28
|
Shi Y, Zhou W, Cheng L, Chen C, Huang Z, Fang X, Wu Q, He Z, Xu S, Lathia JD, Ping Y, Rich JN, Bian XW, Bao S. Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death Differ 2016; 24:167-180. [PMID: 27740621 DOI: 10.1038/cdd.2016.110] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal brain tumor harboring glioma stem cells (GSCs) that promote tumor propagation and therapeutic resistance. GSCs preferentially express several critical cell surface molecules that regulate the pro-survival signaling for maintaining the stem cell-like phenotype. Tetraspanin CD9 has recently been reported as a GSC biomarker that is relevant to the GSC maintenance. However, the underlying molecular mechanisms of CD9 in maintaining GSC property remain elusive. Herein, we report that CD9 stabilizes the IL-6 receptor glycoprotein 130 (gp130) by preventing its ubiquitin-dependent lysosomal degradation to facilitate the STAT3 activation in GSCs. CD9 is preferentially expressed in GSCs of human GBM tumors. Mass spectrometry analysis identified gp130 as an interacting protein of CD9 in GSCs, which was confirmed by immunoprecipitation and immunofluorescent analyses. Disrupting CD9 or gp130 by shRNA significantly inhibited the self-renewal and promoted the differentiation of GSCs. Moreover, CD9 disruption markedly reduced gp130 protein levels and STAT3 activating phosphorylation in GSCs. CD9 stabilized gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote the BMX-STAT3 signaling in GSCs. Importantly, targeting CD9 potently inhibited GSC tumor growth in vivo, while ectopic expression of the constitutively activated STAT3 (STAT3-C) restored the tumor growth impaired by CD9 disruption. Collectively, we uncovered a critical regulatory mechanism mediated by tetraspanin CD9 to maintain the stem cell-like property and tumorigenic potential of GSCs.
Collapse
Affiliation(s)
- Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Cong Chen
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Senlin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yifang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
29
|
Sanpaolo E, Miroballo M, Corbetta S, Verdelli C, Baorda F, Balsamo T, Graziano P, Fabrizio FP, Cinque L, Scillitani A, Muscarella LA, Guarnieri V. EZH2 and ZFX oncogenes in malignant behaviour of parathyroid neoplasms. Endocrine 2016; 54:55-59. [PMID: 26876532 DOI: 10.1007/s12020-016-0892-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
Several studies reported somatic mutations of many genes (MEN1, CTNNB1, CDKIs and others) in parathyroid adenoma, although with different prevalence. Recently, activating mutations of the EZH2 and ZFX oncogenes were identified in benign parathyroid adenoma by whole exome sequencing. The same mutations had been found in blood and ovary malignant tumours. On one hand, this result raised the hypothesis that these oncogenes may play a role in the onset of parathyroid tumour, but it would also suggest they may be involved in malignant, rather benign, parathyroid neoplasm. Our aim was to verify the occurrence of selected mutations of the EZH2 and ZFX genes in an Italian cohort of 23 sporadic parathyroid carcinomas, 12 atypical and 45 typical adenomas. DNA was extracted from paraffin-embedded tissues, PCR amplified and directly sequenced. No mutations were detected in the coding sequence and boundaries of both genes in any of the samples. Two polymorphisms of the EZH2 gene were identified with different prevalence: the rs2072407 variant was present in the 30 % of the samples, in keeping with the overall frequency in larger populations, while the rs78589034 variant, located close to the 5' end of the exon 16, was detected in only one proband with familial isolated hyperparathyroidism; we investigated the possible outcome on the splicing process. EZH2 and ZFX genes do not seem to have an impact on the onset of most parathyroid tumours, both benign and malignant, though further studies on larger cohorts of different ethnicity are needed.
Collapse
Affiliation(s)
- E Sanpaolo
- Medical Genetics, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, 71013, San Giovanni Rotondo, FG, Italy
| | - M Miroballo
- Medical Genetics, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, 71013, San Giovanni Rotondo, FG, Italy
| | - S Corbetta
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | - C Verdelli
- Laboratory of Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | - F Baorda
- Medical Genetics, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, 71013, San Giovanni Rotondo, FG, Italy
| | - T Balsamo
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - P Graziano
- Pathology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - F P Fabrizio
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L Cinque
- Medical Genetics, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, 71013, San Giovanni Rotondo, FG, Italy
| | - A Scillitani
- Endocrinology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L A Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Vito Guarnieri
- Medical Genetics, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
30
|
Zhou W, Cheng L, Shi Y, Ke SQ, Huang Z, Fang X, Chu CW, Xie Q, Bian XW, Rich JN, Bao S. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget 2016; 6:37300-15. [PMID: 26510911 PMCID: PMC4741931 DOI: 10.18632/oncotarget.5836] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Susan Q Ke
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cheng-wei Chu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
32
|
Yang F, Ma H, Feng L, Lian M, Wang R, Fan E, Fang J. Zinc finger protein x-linked (ZFX) contributes to patient prognosis, cell proliferation and apoptosis in human laryngeal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13886-13899. [PMID: 26823701 PMCID: PMC4713487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Zinc finger protein, X-linked (ZFX) gene locus on the human X chromosome is structurally similar to the zinc finger protein, Y-linked gene. Its role in human laryngeal squamous cell carcinoma (LSCC) is still not clearly defined. This study was focused on investigating the role of zinc-finger protein X-linked (ZFX) in human LSCC. Expression levels of ZFX were examined in LSCC tissues, corresponding adjacent non-tumoral tissues and vocal leukoplakia tissues by immunohistochemistry (IHC). The association with the expression level of ZFX and LSCC clincopathological parameters was analyzed. The prognostic value of ZFX expression was also analyzed. Lentivirus-mediated RNA interference was applied to silence ZFX expression and the effects of ZFX knockdown on the growth of human LSCC primary cells was investigated. Overexpression of ZFX was found in LSCC tissues. The expression of ZFX was associated with the clinical stage of LSCC. Patients with higher level of ZFX experienced a poorer prognosis compared to those with lower level of ZFX. Knockdown of ZFX inhibited cell proliferation, colony formation and migration of LSCC primary cells. Moreover, ZFX silencing induced cell apoptosis. These results provide the convincing evidence for the first time that ZFX plays an important role in LSCC development and could be a potential therapeutic target or prognostic predictor for LSCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical UniversityBeijing 100029, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical UniversityBeijing 100730, China
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical UniversityBeijing 100730, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Erzhong Fan
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical UniversityBeijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical UniversityBeijing 100730, China
- Beijing Key Laboratory of Head and Neck Molecular Diagnostic PathologyBeijing 100730, China
| |
Collapse
|
33
|
Abstract
Glioblastoma is the most prevalent and malignant primary brain tumor, containing self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. In this review, Lathia et al. discuss how the integration of genetics, epigenetics, and metabolism has shaped our understanding of how CSCs function to drive GBM growth. Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial.
Collapse
Affiliation(s)
- Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Erin E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Claudia L L Valentim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jeremy N Rich
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
34
|
Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 2015; 72:3411-24. [PMID: 25967289 PMCID: PMC11113644 DOI: 10.1007/s00018-015-1920-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.
Collapse
Affiliation(s)
- Hong Qiu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaoguang Fang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
35
|
Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells. PLoS One 2015; 10:e0129292. [PMID: 26076490 PMCID: PMC4468214 DOI: 10.1371/journal.pone.0129292] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/06/2015] [Indexed: 01/14/2023] Open
Abstract
In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.
Collapse
|
36
|
Jiang J, Liu LY. Zinc finger protein X-linked is overexpressed in colorectal cancer and is associated with poor prognosis. Oncol Lett 2015; 10:810-814. [PMID: 26622575 DOI: 10.3892/ol.2015.3353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/21/2015] [Indexed: 12/23/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is a zinc finger transcription factor and plays a significant role in the self-renewal ability of embryonic stem cells and various cancers. However, its expression and function in colorectal cancer (CRC) remain unclear. In the present study, we evaluated the expression of ZFX in CRC using quantitative polymerase chain reaction (qPCR), western blot analysis and immunohistochemistry (IHC), and further explored its potential functions in CRC cell lines using cell counting kit-8 and Transwell invasion assays. qPCR and western blot analysis revealed that ZFX was significantly upregulated in CRC tissues; IHC further confirmed this finding, revealing that higher expression of ZFX was significantly associated with larger tumor size (P=0.01), higher pathological stage (P=0.02), depth of invasion (P=0.047), lymph node invasion (P=0.02) and higher American Joint Committee on Cancer (AJCC) stage (P=0.04). CRC patients with higher ZFX expression also exhibited significantly shorter survival times (P=0.019). Moreover, knockdown of ZFX significantly suppressed proliferation and invasion in CRC cell lines HCT116 and LoVo. These results suggest that ZFX plays a notable role in CRC tumorigenicity and may serve as a novel marker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Medical Oncology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 310012, P.R. China
| | - Lu-Ying Liu
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
37
|
Yoshimura Y, Shiino A, Muraki K, Fukami T, Yamada S, Satow T, Fukuda M, Saiki M, Hojo M, Miyamoto S, Onishi N, Saya H, Inubushi T, Nozaki K, Tanigaki K. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor. PLoS One 2015; 10:e0128288. [PMID: 26038891 PMCID: PMC4454553 DOI: 10.1371/journal.pone.0128288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.
Collapse
Affiliation(s)
- Yayoi Yoshimura
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Akihiko Shiino
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazue Muraki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
| | - Tadateru Fukami
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masaaki Saiki
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masato Hojo
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606–8507, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
- * E-mail: (KN); (KT)
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- * E-mail: (KN); (KT)
| |
Collapse
|
38
|
JARID1B Expression Plays a Critical Role in Chemoresistance and Stem Cell-Like Phenotype of Neuroblastoma Cells. PLoS One 2015; 10:e0125343. [PMID: 25951238 PMCID: PMC4423965 DOI: 10.1371/journal.pone.0125343] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.
Collapse
|
39
|
Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 2015; 17:170-82. [PMID: 25580734 PMCID: PMC4312504 DOI: 10.1038/ncb3090] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages (TAMs) are enriched in glioblastoma (GBM) that contains glioma stem cells (GSCs) at the apex of its cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role of TAMs in tumor progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete Periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumor growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumor supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through integrin αvβ3 as blocking this signaling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.
Collapse
|