1
|
Hernandez-Miranda ML, Xu D, Ben Issa AA, Johnston DA, Browne M, Cook RB, Sengers BG, Evans ND. Geometric constraint of mechanosensing by modification of hydrogel thickness prevents stiffness-induced differentiation in bone marrow stromal cells. J R Soc Interface 2024; 21:20240485. [PMID: 39353563 PMCID: PMC11444768 DOI: 10.1098/rsif.2024.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular matrix (ECM) stiffness is fundamental in cell division, movement and differentiation. The stiffness that cells sense is determined not only by the elastic modulus of the ECM material but also by ECM geometry and cell density. We hypothesized that these factors would influence cell traction-induced matrix deformations and cellular differentiation in bone marrow stromal cells (BMSCs). To achieve this, we cultivated BMSCs on polyacrylamide hydrogels that varied in elastic modulus and geometry and measured cell spreading, cell-imparted matrix deformations and differentiation. At low cell density BMSCs spread to a greater extent on stiff compared with soft hydrogels, or on thin compared with thick hydrogels. Cell-imparted matrix deformations were greater on soft compared with stiff hydrogels or thick compared with thin hydrogels. There were no significant differences in osteogenic differentiation relative to hydrogel elastic modulus and thickness. However, increased cell density and/or prolonged culture significantly reduced matrix deformations on soft hydrogels to levels similar to those on stiff substrates. This suggests that at high cell densities cell traction-induced matrix displacements are reduced by both neighbouring cells and the constraint imposed by an underlying stiff support. This may explain observations of the lack of difference in osteogenic differentiation as a function of stiffness.
Collapse
Affiliation(s)
- Maria L. Hernandez-Miranda
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Dichu Xu
- Ningbo Institute of Technology, Beihang University, Ningbo315800, People’s Republic of China
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Aya A. Ben Issa
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Martin Browne
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Richard B. Cook
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Bram G. Sengers
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Nicholas D. Evans
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| |
Collapse
|
2
|
Pishnamazi SM, Ghaderian SMH, Irani S, Ardeshirylajimi A. Polycaprolactone/poly L-lactic acid nanofibrous scaffold improves osteogenic differentiation of the amniotic fluid-derived stem cells. In Vitro Cell Dev Biol Anim 2024; 60:106-114. [PMID: 38123755 DOI: 10.1007/s11626-023-00838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Using stem cells is one of the most important determining factors in repairing lesions using regenerative medicine. Obtaining adult stem cells from patients is a perfect choice, but it is worth noting that their differentiation and proliferation potential decreases as the patient ages. For this reason, the use of amniotic fluid stem cells can be one of the excellent alternatives. This research aimed to investigate the osteogenic differentiation potential of the amniotic fluid stem cells while cultured on the polycaprolactone/poly L-lactic acid nanofibrous scaffold. Scaffolds were qualitatively evaluated by a scanning electron microscope, and their hydrophilicity and mechanical properties were studied using contact angle and tensile test, respectively. The biocompatibility and non-toxicity of the nanofibers were also evaluated using viability assay. The osteo-supportive capacity of the nanofibers was examined using alizarin red staining, alkaline phosphatase activity, and calcium release measurement. Finally, the expression level of four important bone-related genes was determined quantitatively. The results demonstrated that the mineralization rate, alkaline phosphatase activity, intracellular calcium, and bone-related genes increased significantly in the cells cultured on the polycaprolactone/poly L-lactic acid scaffold compared to the cells cultured on the tissue culture plate as a control. According to the results, it can be concluded that the polycaprolactone/poly L-lactic acid nanofibrous scaffold surprisingly improved the osteogenic differentiation potential of the amniotic fluid stem cells and, in combination with polycaprolactone/poly L-lactic acid nanofibers could be a promising candidate as bone implants.
Collapse
Affiliation(s)
| | | | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
4
|
Xavier M, Kyriazi ME, Lanham S, Alexaki K, Matthews E, El-Sagheer AH, Brown T, Kanaras AG, Oreffo ROC. Enrichment of Skeletal Stem Cells from Human Bone Marrow Using Spherical Nucleic Acids. ACS NANO 2021; 15:6909-6916. [PMID: 33751885 DOI: 10.1021/acsnano.0c10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human bone marrow (BM)-derived stromal cells contain a population of skeletal stem cells (SSCs), with the capacity to differentiate along the osteogenic, adipogenic, and chondrogenic lineages, enabling their application to clinical therapies. However, current methods to isolate and enrich SSCs from human tissues remain, at best, challenging in the absence of a specific SSC marker. Unfortunately, none of the current proposed markers alone can isolate a homogeneous cell population with the ability to form bone, cartilage, and adipose tissue in humans. Here, we have designed DNA-gold nanoparticles able to identify and sort SSCs displaying specific mRNA signatures. The current approach demonstrates the significant enrichment attained in the isolation of SSCs, with potential therein to enhance our understanding of bone cell biology and translational applications.
Collapse
Affiliation(s)
- Miguel Xavier
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Maria-Eleni Kyriazi
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Konstantina Alexaki
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Elloise Matthews
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Mousa M, Milan JA, Kelly O, Doyle J, Evans ND, Oreffo ROC, Dawson JI. The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomater Sci 2021; 9:3150-3161. [PMID: 33730142 DOI: 10.1039/d0bm01444c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LAPONITE® clay nanoparticles are known to exert osteogenic effects on human bone marrow stromal cells (HBMSCs), most characteristically, an upregulation in alkaline phosphatase activity and increased calcium deposition. The specific properties of LAPONITE® that impart its bioactivity are not known. In this study the role of lithium, a LAPONITE® degradation product, was investigated through the use of lithium salts and lithium modified LAPONITE® formulations. In contrast to intact particles, lithium ions applied at concentrations equivalent to that present in LAPONITE®, failed to induce any significant increase in alkaline phosphatase (ALP) activity. Furthermore, no significant differences were observed in ALP activity with modified clay structures and the positive effect on osteogenic gene expression did not correlate with the lithium content of modified clays. These results suggest that other properties of LAPONITE® nanoparticles, and not their lithium content, are responsible for their bioactivity.
Collapse
Affiliation(s)
- Mohamed Mousa
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Juan Aviles Milan
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Oscar Kelly
- BYK Additives Ltd., Moorfield Road, Widnes, Cheshire WA8 3AA, UK
| | - Jane Doyle
- BYK Additives Ltd., Moorfield Road, Widnes, Cheshire WA8 3AA, UK
| | - Nicholas D Evans
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Richard O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Jonathan I Dawson
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
6
|
Laowanitwattana T, Aungsuchawan S, Narakornsak S, Markmee R, Tancharoen W, Keawdee J, Boonma N, Tasuya W, Peerapapong L, Pangjaidee N, Pothacharoen P. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta Histochem 2018; 120:701-712. [PMID: 30078494 DOI: 10.1016/j.acthis.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a bone degenerative disease characterized by a decrease in bone strength and an alteration in the osseous micro-architecture causing an increase in the risk of fractures. These diseases usually happen in post-menopausal women and elderly men. The most common treatment involves anti-resorptive agent drugs. However, the inhibition of bone resorption alone is not adequate for recovery in patients at the severe stage of osteoporosis who already have a fracture. Therefore, the combination of utilizing osteoblast micro mimetic scaffold in cultivation with the stimulation of osteoblastic differentiations to regain bone formation is a treatment strategy of considerable interest. The aims of this current study are to investigate the osteoblastic differentiation potential of mesenchymal stem cells derived from human amniotic fluid and to compare the monolayer culture and scaffold culture conditions. The results showed the morphology of cells in human amniotic fluid as f-type, which is a typical cell shape of mesenchymal stem cells. In addition, the proliferation rate of cells in human amniotic fluid reached the highest peak after 14 days of culturing. After which time, the growth rate slowly decreased. Moreover, the positive expression of specific mesenchymal cell surface markers including CD44, CD73, CD90, and also HLA-ABC (MHC class I) were recorded. On the other hand, the negative expressions of the endothelial stem cells markers (CD31), the hematopoietic stem cells markers (CD34, 45), the amniotic stem cells markers (CD117), and also the HLA-DR (MHC class II) were also recorded. The expressions of osteoblastogenic related genes including OCN, COL1A1, and ALP were higher in the osteogenic-induced group when compared to the control group. Interestingly, the osteoblastogenic related gene expressions that occurred under scaffold culture conditions were superior to the monolayer culture conditions. Additionally, higher ALP activity and greater calcium deposition were recorded in the extracellular matrix in the osteogenic-induced group than in the culture in the scaffold group. In summary, the mesenchymal stem cells derived from human amniotic fluid can be induced to be differentiated into osteoblastic-like cells and can promote osteoblastic differentiation using the applied scaffold.
Collapse
|
7
|
Xavier M, de Andrés MC, Spencer D, Oreffo ROC, Morgan H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J R Soc Interface 2018; 14:rsif.2017.0233. [PMID: 28835540 PMCID: PMC5582119 DOI: 10.1098/rsif.2017.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - María C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Daniel Spencer
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Scarpa E, Janeczek AA, Hailes A, de Andrés MC, De Grazia A, Oreffo RO, Newman TA, Evans ND. Polymersome nanoparticles for delivery of Wnt-activating small molecules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1267-1277. [PMID: 29555223 DOI: 10.1016/j.nano.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/05/2018] [Accepted: 02/24/2018] [Indexed: 01/02/2023]
Abstract
Spatiotemporal control of drug delivery is important for a number of medical applications and may be achieved using polymersome nanoparticles (PMs). Wnt signalling is a molecular pathway activated in various physiological processes, including bone repair, that requires precise control of activation. Here, we hypothesise that PMs can be stably loaded with a small molecule Wnt agonist, 6-bromoindirubin-3'-oxime (BIO), and activate Wnt signalling promoting the osteogenic differentiation in human primary bone marrow stromal cells (BMSCs). We showed that BIO-PMs induced a 40% increase in Wnt signaling activation in reporter cell lines without cytotoxicity induced by free BIO. BMSCs incubated with BIO-PMs showed a significant up-regulation of the Wnt target gene AXIN2 (14 ± 4 fold increase, P < 0.001) and a prolonged activation of the osteogenic gene RUNX2. We conclude that BIO-PMs could represent an innovative approach for the controlled activation of Wnt signaling for promoting bone regeneration after fracture.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alethia Hailes
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Maria C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Antonio De Grazia
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Richard Oc Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Tracey A Newman
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Medicine, University of Southampton, Southampton, United Kingdom.
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
9
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
10
|
Waddell SJ, de Andrés MC, Tsimbouri PM, Alakpa EV, Cusack M, Dalby MJ, Oreffo ROC. Biomimetic oyster shell-replicated topography alters the behaviour of human skeletal stem cells. J Tissue Eng 2018; 9:2041731418794007. [PMID: 30202512 PMCID: PMC6124183 DOI: 10.1177/2041731418794007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
The regenerative potential of skeletal stem cells provides an attractive prospect to generate bone tissue needed for musculoskeletal reparation. A central issue remains efficacious, controlled cell differentiation strategies to aid progression of cell therapies to the clinic. The nacre surface from Pinctada maxima shells is known to enhance bone formation. However, to date, there is a paucity of information on the role of the topography of P. maxima surfaces, nacre and prism. To investigate this, nacre and prism topographical features were replicated onto polycaprolactone and skeletal stem cell behaviour on the surfaces studied. Skeletal stem cells on nacre surfaces exhibited an increase in cell area, increase in expression of osteogenic markers ALP (p < 0.05) and OCN (p < 0.01) and increased metabolite intensity (p < 0.05), indicating a role of nacre surface to induce osteogenic differentiation, while on prism surfaces, skeletal stem cells did not show alterations in cell area or osteogenic marker expression and a decrease in metabolite intensity (p < 0.05), demonstrating a distinct role for the prism surface, with the potential to maintain the skeletal stem cell phenotype.
Collapse
Affiliation(s)
- Shona J Waddell
- Centre for Human Development, Stem Cells
and Regeneration, Institute of Developmental Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - María C de Andrés
- Centre for Human Development, Stem Cells
and Regeneration, Institute of Developmental Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Penelope M Tsimbouri
- Centre for Cell Engineering, Institute
of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow,
UK
| | - Enateri V Alakpa
- Department of Integrative Medical
Biology, Umeå University, Umeå, Sweden
| | - Maggie Cusack
- Division of Biological and Environmental
Science, University of Stirling, Stirling, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute
of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow,
UK
| | - Richard OC Oreffo
- Centre for Human Development, Stem Cells
and Regeneration, Institute of Developmental Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Rotherham M, Henstock JR, Qutachi O, El Haj AJ. Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:173-184. [DOI: 10.1016/j.nano.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/14/2017] [Accepted: 09/15/2017] [Indexed: 01/18/2023]
|
12
|
Lian WS, Wu RW, Lee MS, Chen YS, Sun YC, Wu SL, Ke HJ, Ko JY, Wang FS. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4. J Mol Med (Berl) 2017; 95:1327-1340. [PMID: 28884332 DOI: 10.1007/s00109-017-1583-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/21/2017] [Accepted: 08/20/2017] [Indexed: 01/06/2023]
Abstract
Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, β-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3'-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA. KEY MESSAGES Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4. The SMSCs showed high proliferation and osteogenic and chondrogenic potencies. miR-29a regulated osteogenesis of the SMSCs through modulation of HDAC4 and Wnt3a. A high osteogenic potency of the SMSCs existed in mice overexpressing miR-29a in bone. Aberrant osteogenesis in SMSCs provides a new insight to subchondral damage in OA.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ren-Wen Wu
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shing-Long Wu
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan. .,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Janeczek AA, Scarpa E, Horrocks MH, Tare RS, Rowland CA, Jenner D, Newman TA, Oreffo RO, Lee SF, Evans ND. PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine (Lond) 2017; 12:845-863. [PMID: 28351228 DOI: 10.2217/nnm-2016-0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To fabricate PEGylated liposomes which preserve the activity of hydrophobic Wnt3A protein, and to demonstrate their efficacy in promoting expansion of osteoprogenitors from human bone marrow. METHODS PEGylated liposomes composed of several synthetic lipids were tested for their ability to preserve Wnt3A activity in reporter and differentiation assays. Single-molecule microspectroscopy was used to test for direct association of protein with liposomes. RESULTS Labeled Wnt3A protein directly associated with all tested liposome preparations. However, Wnt3A activity was preserved or enhanced in PEGylated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes but not in PEGylated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. PEGylated Wnt3A liposomes associated with skeletal stem cell populations in human bone marrow and promoted osteogenesis. CONCLUSION Active Wnt protein-containing PEGylated liposomes may have utility for systemic administration for bone repair.
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Edoardo Scarpa
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Rahul S Tare
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Caroline A Rowland
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Dominic Jenner
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Tracey A Newman
- Clinical & Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Building 85, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Richard Oc Oreffo
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nicholas D Evans
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
14
|
Jones EA, Giannoudis PV, Kouroupis D. Bone repair with skeletal stem cells: rationale, progress to date and clinical application. Ther Adv Musculoskelet Dis 2016; 8:57-71. [PMID: 27247633 DOI: 10.1177/1759720x16642372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow (BM) contains stem cells for both hematopoietic and nonhematopoietic lineages. Hematopoietic stem cells enable hematopoiesis to occur in a controlled manner in order to accurately compensate for the loss of short- as well as long-lived mature blood cells. The physiological role of nonhematopoietic BM stem cells, often referred to as multipotential stromal cells or skeletal stem cells (SSCs), is less understood. According to an authoritative current opinion, the main function of SSCs is to give rise to cartilage, bone, marrow fat and hematopoiesis-supportive stroma, in a specific sequence during embryonic and postnatal development. This review outlines recent advances in the understanding of origins and homeostatic functions of SSCs in vivo and highlights current and future SSC-based treatments for skeletal and joint disorders.
Collapse
Affiliation(s)
- Elena A Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Room 5.24 Clinical Sciences Building, Leeds, West Yorkshire LS9 7TF, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Leeds General Infirmary, Leeds, UK NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Dimitrios Kouroupis
- Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, University Campus of Ioannina, Ioannina, Greece
| |
Collapse
|