1
|
Hatabi K, Hirohara Y, Kushida Y, Kuroda Y, Wakao S, Trosko J, Dezawa M. Inhibition of Gap Junctional Intercellular Communication Upregulates Pluripotency Gene Expression in Endogenous Pluripotent Muse Cells. Cells 2022; 11:2701. [PMID: 36078111 PMCID: PMC9455024 DOI: 10.3390/cells11172701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gap junctions (GJ) are suggested to support stem cell differentiation. The Muse cells that are applied in clinical trials are non-tumorigenic pluripotent-like endogenous stem cells, can be collected as stage-specific embryonic antigen 3 (SSEA-3+) positive cells from multiple tissues, and show triploblastic differentiation and self-renewability at a single cell level. They were reported to up-regulate pluripotency gene expression in suspension. We examined how GJ inhibition affected pluripotency gene expression in adherent cultured-Muse cells. Muse cells, mainly expressing gap junction alpha-1 protein (GJA1), reduced GJ intercellular communication from ~85% to 5-8% after 24 h incubation with 120 μM 18α-glycyrrhetinic acid, 400 nM 12-O-tetradecanoylphorbol-13-acetate, and 90 μM dichlorodiphenyltrichloroethane, as confirmed by a dye-transfer assay. Following inhibition, NANOG, OCT3/4, and SOX2 were up-regulated 2-4.5 times more; other pluripotency-related genes, such as KLF4, CBX7, and SPRY2 were elevated; lineage-specific differentiation-related genes were down-regulated in quantitative-PCR and RNA-sequencing. Connexin43-siRNA introduction also confirmed the up-regulation of NANOG, OCT3/4, and SOX2. YAP, a co-transcriptional factor in the Hippo signaling pathway that regulates pluripotency gene expression, co-localized with GJA1 (also known as Cx43) in the cell membrane and was translocated to the nucleus after GJ inhibition. Adherent culture is usually more suitable for the stable expansion of cells than is a suspension culture. GJ inhibition is suggested to be a simple method to up-regulate pluripotency in an adherent culture that involves a Cx43-YAP axis in pluripotent stem cells, such as Muse cells.
Collapse
Affiliation(s)
- Khaled Hatabi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Yukari Hirohara
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
- Regenerative Medicine Division, Life Science Institute, Inc., Tokyo 135-0004, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - James Trosko
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| |
Collapse
|
2
|
Cx43 overexpression is involved in the hyper-proliferation effect of trichloroethylene on human embryonic stem cells. Toxicology 2022; 465:153065. [PMID: 34896440 DOI: 10.1016/j.tox.2021.153065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is a major environmental contaminant. Maternal exposure of TCE is linked to developmental defects, but the mechanisms remain to be elucidated. Along with a strategy of 3Rs principle, human embryonic stem cells (hESCs) are regarded as most promising in vitro models for developmental toxicity studies. TCE interfered with hESCs differentiation, but no report was available for TCE effects on hESCs proliferation. Here, we aimed to explore the toxic effects and mechanisms of TCE on hESCs proliferation. Treatment with TCE, did not affect the pluripotency genes expression. However, TCE enhanced hESCs proliferation, manifested by increased cell number, PCNA expression and EdU incorporation. Moreover, TCE exposure upregulated the protein expression levels of Cx43 and cyclin-dependent kinases. Knockdown of Cx43 attenuated the TCE-induced cell hyper-proliferation and CDK2 upregulation. Furthermore, TCE increased Akt phosphorylation, and the inhibition of Akt blocked the TCE-induced Cx43 overexpression and cell proliferation. In conclusion, TCE exposure resulted in upregulation of Cx43 via Akt phosphorylation, consequently stimulated CDK2 expression, contributing to hyper-proliferation in hESCs. Our study brings to light that TCE stimulated the proliferation of hESCs via Cx43, providing a new research avenue for the causes of TCE-induced developmental toxicity.
Collapse
|
3
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Esseltine JL, Brooks CR, Edwards NA, Subasri M, Sampson J, Séguin C, Betts DH, Laird DW. Dynamic regulation of connexins in stem cell pluripotency. Stem Cells 2019; 38:52-66. [DOI: 10.1002/stem.3092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/18/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jessica L. Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Division of BioMedical Sciences, Faculty of Medicine; Memorial University of Newfoundland; St. John's Newfoundland and Labrador Canada
| | - Courtney R. Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Nicole A. Edwards
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Mathushan Subasri
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Jacinda Sampson
- Department of Neurology; Stanford University Medical Center; Palo Alto California
| | - Cheryle Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| |
Collapse
|
5
|
Yang W, Lampe PD, Kensel-Hammes P, Hesson J, Ware CB, Crisa L, Cirulli V. Connexin 43 Functions as a Positive Regulator of Stem Cell Differentiation into Definitive Endoderm and Pancreatic Progenitors. iScience 2019; 19:450-460. [PMID: 31430690 PMCID: PMC6708988 DOI: 10.1016/j.isci.2019.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023] Open
Abstract
Efficient stem cell differentiation into pancreatic islet cells is of critical importance for the development of cell replacement therapies for diabetes. Here, we identify the expression pattern of connexin 43 (Cx43), a gap junction (GJ) channel protein, in human embryonic stem cell (hESC)-derived definitive endoderm (DE) and primitive gut tube cells, representing early lineages for posterior foregut (PF), pancreatic progenitors (PP), pancreatic endocrine progenitors (PE), and islet cells. As the function of GJ channels is dependent on their gating status, we tested the impact of supplementing hESC-derived PP cell cultures with AAP10, a peptide that promotes Cx43 GJ channel opening. We found that this treatment promotes the expression of DE markers FoxA2 and Sox17, leads to a more efficient derivation of DE, and improves the yield of PF, PP, and PE cells. These results demonstrate a functional involvement of GJ channels in the differentiation of embryonic stem cells into pancreatic cell lineages.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patricia Kensel-Hammes
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Shao Q, Esseltine JL, Huang T, Novielli-Kuntz N, Ching JE, Sampson J, Laird DW. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules 2019; 9:E474. [PMID: 31514306 PMCID: PMC6770901 DOI: 10.3390/biom9090474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
In the last couple of decades, there has been a growing optimism surrounding the potential transformative use of human mesenchymal stem cells (MSCs) and human-induced pluripotent stem cells (iPSCs) for regenerative medicine and disease treatment. In order for this to occur, it is first essential to understand the mechanisms underpinning their cell-fate specification, which includes cell signaling via gap junctional intercellular communication. Here, we investigated the role of the prototypical gap junction protein, connexin43 (Cx43), in governing the differentiation of iPSCs into MSCs and MSC differentiation along the adipogenic lineage. We found that control iPSCs, as well as iPSCs derived from oculodentodigital dysplasia patient fibroblasts harboring a GJA1 (Cx43) gene mutation, successfully and efficiently differentiated into LipidTox and perilipin-positive cells, indicating cell differentiation along the adipogenic lineage. Furthermore, the complete CRISPR-Cas9 ablation of Cx43 from iPSCs did not prevent their differentiation into bona fide MSCs or pre-adipocytes, strongly suggesting that even though Cx43 expression is upregulated during adipogenesis, it is expendable. Interestingly, late passage Cx43-ablated MSCs senesced more quickly than control cells, resulting in failure to properly differentiate in vitro. We conclude that despite being upregulated during adipogenesis, Cx43 plays no detectable role in the early stages of human iPSC-derived MSC adipogenic differentiation. However, Cx43 may play a more impactful role in protecting MSCs from premature senescence.
Collapse
Affiliation(s)
- Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| | - Tao Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Pathology, Shenyang Medical College, Shenyang 110034, China.
| | - Nicole Novielli-Kuntz
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jamie E Ching
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Peng Q, Yue C, Chen ACH, Lee KC, Fong SW, Yeung WSB, Lee YL. Connexin 43 is involved in early differentiation of human embryonic stem cells. Differentiation 2019; 105:33-44. [DOI: 10.1016/j.diff.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022]
|
8
|
Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 2018; 11:015005. [DOI: 10.1088/1758-5090/aae0a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Dynamic intercellular transport modulates the spatial patterning of differentiation during early neural commitment. Nat Commun 2018; 9:4111. [PMID: 30291250 PMCID: PMC6173785 DOI: 10.1038/s41467-018-06693-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The initiation of heterogeneity within a population of phenotypically identical progenitors is a critical event for the onset of morphogenesis and differentiation patterning. Gap junction communication within multicellular systems produces complex networks of intercellular connectivity that result in heterogeneous distributions of intracellular signaling molecules. In this study, we investigate emergent systems-level behavior of the intercellular network within embryonic stem cell (ESC) populations and corresponding spatial organization during early neural differentiation. An agent-based model incorporates experimentally-determined parameters to yield complex transport networks for delivery of pro-differentiation cues between neighboring cells, reproducing the morphogenic trajectories during retinoic acid-accelerated mouse ESC differentiation. Furthermore, the model correctly predicts the delayed differentiation and preserved spatial features of the morphogenic trajectory that occurs in response to intercellular perturbation. These findings suggest an integral role of gap junction communication in the temporal coordination of emergent patterning during early differentiation and neural commitment of pluripotent stem cells.
Collapse
|
10
|
Wörsdörfer P, Wagner N, Ergün S. The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochem Cell Biol 2018; 150:327-339. [PMID: 30039329 DOI: 10.1007/s00418-018-1697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Since almost 4 decades, connexins have been discussed as important regulators of embryogenesis. Several different members of the gene family can be detected in the preimplantation embryo and during gastrulation. However, genetically engineered mice deficient for every connexin expressed during early development are available and even double-deficient mice were generated. Interestingly, all of these mice complete gastrulation without any abnormalities. This raises the question if the role of connexins has been overrated or if other gene family members compensate and mask their importance. To answer this question, embryos completely devoid of any gap junctional communication need to be investigated. This is challenging because a variety of connexin genes are co-expressed and some null mutations lead to a lethal phenotype. In addition, maternal connexin transcripts were described to persist until the blastocyst stage. In this review, we summarize the current knowledge about the role of connexins during preimplantation development and in embryonic stem cells. We propose that the use of pluripotent stem cells, trophoblast stem cells, as well as artificial embryo-like structures and organoid cultures in combination with multiplex CRISPR/Cas9-based genome editing provides a powerful platform to comprehensively readdress this issue and decipher the role of connexins during lineage decision, differentiation, and morphogenesis in a cell culture model for mouse and human development.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany.
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| |
Collapse
|
11
|
Wörsdörfer P, Willecke K. Functional Analysis of Connexin Channels in Cultured Cells by Neurobiotin Injection and Visualization. Bio Protoc 2017; 7:e2325. [PMID: 34541087 DOI: 10.21769/bioprotoc.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 11/02/2022] Open
Abstract
Functional gap junction channels between neighboring cells can be assessed by microinjection of low molecular weight tracer substances into cultured cells. The extent of direct intercellular communication can be precisely quantified by this method. This protocol describes the iontophoretic injection and visualisation of Neurobiotin into cultured cells.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Klaus Willecke
- LIMES Institute, Molecular Genetics, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|