1
|
Luo Q, Ai L, Tang S, Zhang H, Ma J, Xiao X, Zhong K, Tian G, Cheng B, Xiong C, Chen X, Lu H. Developmental and cardiac toxicity assessment of Ethyl 3-(N-butylacetamido) propanoate (EBAAP) in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106572. [PMID: 37307698 DOI: 10.1016/j.aquatox.2023.106572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Ethyl 3-(N-butylacetamido) propanoate (EBAAP) is one of the most widely used mosquito repellents worldwide, and is also commonly used to produce cosmetics. Residues have recently been detected in surface and groundwater in many countries, and their potential to harm the environment is unknown. Therefore, more studies are needed to fully assess the toxicity of EBAAP. This is the first investigation into the developmental toxicity and cardiotoxicity of EBAAP on zebrafish embryos. EBAAP was toxic to zebrafish, with a lethal concentration 50 (LC50) of 140 mg/L at 72 hours post fertilization (hpf). EBAAP exposure also reduced body length, slowed the yolk absorption rate, induced spinal curvature and pericardial edema, decreased heart rate, promoted linear lengthening of the heart, and diminished cardiac pumping ability. The expression of heart developmental-related genes (nkx2.5, myh6, tbx5a, vmhc, gata4, tbx2b) was dysregulated, intracellular oxidative stress increased significantly, the activities of catalase (CAT) and superoxide dismutase (SOD) decreased, and malondialdehyde (MDA) content increased significantly. The expression of apoptosis-related genes (bax/bcl2, p53, caspase9, caspase3) was significantly upregulated. In conclusion, EBAAP induced abnormal morphology and heart defects during the early stages of zebrafish embryo development by potentially inducing the generation and accumulation of reactive oxygen species (ROS) in vivo and activating the oxidative stress response. These events dysregulate the expression of several genes and activate endogenous apoptosis pathways, eventually leading to developmental disorders and heart defects.
Collapse
Affiliation(s)
- Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Liping Ai
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuqiong Tang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hua Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
2
|
Wang D, Liu C, Liu H, Meng Y, Lin F, Gu Y, Wang H, Shang M, Tong C, Sachinidis A, Ying Q, Li L, Peng L. ERG1 plays an essential role in rat cardiomyocyte fate decision by mediating AKT signaling. Stem Cells 2021; 39:443-457. [PMID: 33426760 DOI: 10.1002/stem.3328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin β1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin β1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3β to upregulate the expression levels of β-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKβ to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Yilei Meng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Fang Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yanqiong Gu
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hanrui Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Tong
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), Cologne, Germany
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
González-Castro TB, Tovilla-Zárate CA, López-Narvaez ML, Juárez-Rojop IE, Calderón-Colmenero J, Sandoval JP, García-Montes JA, Blachman-Braun R, Castillo-Avila RG, García-Flores E, Cazarín-Santos BG, Borgonio-Cuadra VM, Posadas-Sánchez R, Vargas-Alarcón G, Rodríguez-Pérez JM, Pérez-Hernández N. Association between congenital heart disease and NKX2.5 gene polymorphisms: systematic review and meta-analysis. Biomark Med 2020; 14:1747-1757. [PMID: 33346701 DOI: 10.2217/bmm-2020-0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To analyze the association of NKX2.5 gene with congenital heart disease (CHD), and to determine if the variants rs703752, rs3729753 and rs2277923 increase the risk for developing CHD. Materials & methods: PubMed, EBSCO and Web of Science databases were screened to identify eligible studies. Through a comprehensive meta-analysis software, the association between NKX2.5 gene variants and susceptibility of CHD was calculated by pooled odd ratio (ORs) and 95% CI. Results: We observed that the allelic model of rs703752 and rs2277923 increased the risk in the overall population: OR = 1.24; 95% CI: 1.00-1.55; Z p-value = 0.049; OR = 1.18; 95% CI: 0.01-1.37; Z p-value = 0.036; respectively. Conclusion: Our results suggested that the rs703752 and rs2277923 polymorphisms of the NKX2.5 gene are associated with CHD.
Collapse
Affiliation(s)
- Thelma B González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Carlos A Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - María L López-Narvaez
- General Hospital of Yajalón Manuel Velasco Siles, Secretaría de Salud, Yajalón, Chiapas, Mexico
| | - Isela E Juárez-Rojop
- Academic Division of Health Sciences, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Juan Calderón-Colmenero
- Department of Pediatric Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Juan P Sandoval
- Laboratory of Hemodynamics & Intervention in Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José A García-Montes
- Laboratory of Hemodynamics & Intervention in Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ruben Blachman-Braun
- Department of Urology, University of Miller School of Medicine, Miami, FL 33136, USA
| | - Rosa G Castillo-Avila
- Academic Division of Health Sciences, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.,Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Esbeidy García-Flores
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benny G Cazarín-Santos
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica M Borgonio-Cuadra
- Department of Genetics, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José M Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
4
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|
5
|
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD, Dain L. An update on genetic variants of the NKX2-5. Hum Mutat 2020; 41:1187-1208. [PMID: 32369864 DOI: 10.1002/humu.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.
Collapse
Affiliation(s)
- Jorge E Kolomenski
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Leandro Simonetti
- Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Li M, Zhang T, Jia Y, Sun Y, Zhang S, Mi P, Feng Z, Zhao X, Chen D, Feng X. Combined treatment of melatonin and sodium tanshinone IIA sulfonate reduced the neurological and cardiovascular toxicity induced by deltamethrin in zebrafish. CHEMOSPHERE 2020; 243:125373. [PMID: 31765895 DOI: 10.1016/j.chemosphere.2019.125373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The pyrethroid insecticide deltamethrin has been reported to have an effect on vertebrate development and cardiovascular disease. Sodium tanshinone IIA sulfonate (STS) is considered to have cardioprotective effects and melatonin is known to regulate sleep-waking cycles. In this experiment, we used transgenic zebrafish Tg (kdrl:mCherry) and Tg (myl7:GFP) to investigate whether STS and melatonin could reverse the cardiovascular toxicity and neurotoxicity induced by deltamethrin. Zebrafish embryos were exposed to 25 μg/L deltamethrin at 10 hpf and treated with 100 mmol/L STS and 1 μmol/L melatonin showed that deltamethrin treatment affected normal cardiovascular development. In situ hybridization and qRT-PCR results showed that deltamethrin could interfere with the normal expression of cardiovascular development-related genes vegfr2, shh, gata4, nkx2.5, causing functional defects in the cardiovascular system. In addition, deltamethrin could affect the sleep-waking behavior of larvae, increasing the activity of larvae, decreasing the rest behavior and the expression of hcrt, hcrtr, aanat2 were down-regulated. The addition of melatonin and STS can significantly alleviate cardiovascular toxicity and sleep-waking induced by deltamethrin, while restoring the expression of related genes to normal levels. Our study demonstrates the role of STS and melatonin in protecting cardiovascular and sleep-waking behavior caused by deltamethrin.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ti Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - YiQing Jia
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - YuMeng Sun
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - ShaoZhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - ZeYang Feng
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - DongYan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - XiZeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
8
|
Wen H, Zhang R, Li Y, Qian H, Yan Z, Chen Y, Li G. Association between functional polymorphisms in the promoter of the miR-143/145 cluster and risk of conotruncal heart defects. Per Med 2019; 16:449-455. [PMID: 31691635 DOI: 10.2217/pme-2018-0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aim: Conotruncal heart defects (CTDs) are the most common form of congenital heart disease. We investigated the association of these two single-nucleotide polymorphisms (SNPs) in the promoter of miR-143/145 (rs353292 and rs4705343) with the susceptibility to CTDs in a Chinese population. Materials & methods: Two SNPs in the promoter of miR-143/145 (rs353292 and rs4705343) have been examined by PCR-RFLP methodology for 259 CTDs patients and 303 control subjects. Results: An association between SNP rs4705343 of miR-143/145 and CTDs has been confirmed in the Chinese Han population. Conclusion: Our results indicated that SNP rs4705343 in miR-143/145 is a potential genetic marker for CTDs in the Chinese Han population.
Collapse
Affiliation(s)
- Heling Wen
- Department of Cardiology, Hospital of The University of Electronic Science & Technology of China & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Rui Zhang
- Department of Cardiovascular Surgery, The Seventh People's Hospital of Chengdu, Chengdu 610021, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguo Yan
- Department of Cardiovascular Surgery Center, Beijing An-zhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yu Chen
- Department of Cardiology, Hospital of The University of Electronic Science & Technology of China & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Gang Li
- Department of Cardiology, Hospital of The University of Electronic Science & Technology of China & Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
9
|
Wang H, Liu Y, Li Y, Wang W, Li L, Meng M, Xie Y, Zhang Y, Yunfeng Z, Han S, Zeng J, Hou Z, Jiang L. Analysis of NKX2-5 in 439 Chinese Patients with Sporadic Atrial Septal Defect. Med Sci Monit 2019; 25:2756-2763. [PMID: 30982828 PMCID: PMC6481236 DOI: 10.12659/msm.916052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The NKX2 gene family is made up of core transcription factors that are involved in the morphogenesis of the vertebrate heart. NKx2-5 plays a pivotal role in mouse cardiogenesis, and mutations in NKx2-5 result in an abnormal structure and function of the heart, including atrial septal defect and cardiac electrophysiological abnormalities. Material/Methods To investigate the genetic variation of NKX2-5 in Chinese patients with sporadic atrial septal defect, we sequenced the full length of the NKX2-5 gene in the participants of the study. Four hundred thirty-nine patients and 567 healthy unrelated individuals were recruited. Genomic DNA was extracted from the peripheral blood leukocytes of the participants. DNA samples from the participants were amplified by multiplex PCR and sequenced on an Illumina HiSeq platform. Variations were detected by comparison with a standard reference genome and annotation with a variant effect predictor. Results Thirty variations were detected in Chinese patients with sporadic atrial septal defect, and 6 single nucleotide polymorphisms (SNPs) had a frequency greater than 1%. Among the 30 variations, the SNPs rs2277923 and rs3729753 were extremely prominent, with a high frequency and odds ratio in patients. Conclusions Single nucleotide variations are the prominent genetic variations of NKX2-5 in Chinese patients with sporadic atrial septal defect. The SNPs rs2277923 and rs3729753 are prominent single nucleotide variations (SNVs) in Chinese patients with sporadic atrial septal defect.
Collapse
Affiliation(s)
- Hongshu Wang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yong Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yaxiong Li
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wenju Wang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Lin Li
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Mingyao Meng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yanhua Xie
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yayong Zhang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zi Yunfeng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Shen Han
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jianying Zeng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - ZongLiu Hou
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Lihong Jiang
- The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
10
|
Wang M, Ling W, Xiong C, Xie D, Chu X, Li Y, Qiu X, Li Y, Xiao X. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes. Cell Reprogram 2019; 21:63-77. [DOI: 10.1089/cell.2018.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mingyu Wang
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunxia Xiong
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuemin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Zakariyah A, Rajgara R, Shelton M, Blais A, Skerjanc IS, Burgon PG. Combinatorial Utilization of Murine Embryonic Stem Cells and In Vivo Models to Study Human Congenital Heart Disease. ACTA ACUST UNITED AC 2018; 48:e75. [PMID: 30548532 DOI: 10.1002/cpsc.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have established an in vitro model of the human congenital heart defect (CHD)-associated mutation NKX2.5 R141C. We describe the use of the hanging drop method to differentiate Nkx2.5R141C/+ murine embryonic stem cells (mESCs) along with Nkx2.5+/+ control cells. This method allows us to recapitulate the early stages of embryonic heart development in tissue culture. We also use qRT-PCR and immunofluorescence to examine samples at different time points during differentiation to validate our data. The in vivo model is a mouse line with a knock-in of the same mutation. We describe the isolation of RNA from embryonic day 8.5 (E8.5) embryos and E9.5 hearts of wild-type and mutant mice. We found that the in vitro model shows reduced cardiomyogenesis, similar to Nkx2.5R141C/+ embryos at E8.5, indicating a transient loss of cardiomyogenesis at this time point. These results suggest that our in vitro model can be used to study very early changes in heart development that cause CHD. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Abeer Zakariyah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashida Rajgara
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Shelton
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick G Burgon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|