1
|
Wang Y, Xu YJ, Yang CX, Huang RT, Xue S, Yuan F, Yang YQ. SMAD4 loss-of-function mutation predisposes to congenital heart disease. Eur J Med Genet 2022; 66:104677. [PMID: 36496093 DOI: 10.1016/j.ejmg.2022.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) represents the most frequent developmental deformity in human beings and accounts for substantial morbidity and mortality worldwide. Accumulating investigations underscore the strong inherited basis of CHD, and pathogenic variations in >100 genes have been related to CHD. Nevertheless, the heritable defects underpinning CHD remain elusive in most cases, mainly because of the pronounced genetic heterogeneity. In this investigation, a four-generation family with CHD was recruited and clinically investigated. Via whole-exome sequencing and Sanger sequencing assays in selected family members, a heterozygous variation in the SMAD4 gene (coding for a transcription factor essential for cardiovascular morphogenesis), NM_005359.6: c.285T > A; p.(Tyr95*), was identified to be in co-segregation with autosomal-dominant CHD in the entire family. The truncating variation was not observed in 460 unrelated non-CHD volunteers employed as control subjects. Functional exploration by dual-reporter gene analysis demonstrated that Tyr95*-mutant SMAD4 lost transactivation of its two key downstream target genes NKX2.5 and ID2, which were both implicated with CHD. Additionally, the variation nullified the synergistic transcriptional activation between SMAD4 and GATA4, another transcription factor involved in CHD. These data strongly indicate SMAD4 may be associated with CHD and shed more light on the molecular pathogenesis underlying CHD, implying potential implications for antenatal precise prevention and prognostic risk stratification of the patients affected with CHD.
Collapse
Affiliation(s)
- Yin Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fang Yuan
- Department of Cardiac Intensive Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
3
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
4
|
Dai CJ, Cao YT, Huang F, Wang YG. Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. World J Stem Cells 2022; 14:41-53. [PMID: 35126827 PMCID: PMC8788178 DOI: 10.4252/wjsc.v14.i1.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-β signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-β/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
Collapse
Affiliation(s)
- Chuan-Jing Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yu-Ting Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People’s Hospital of Hangzhou Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
5
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Jang JH, Kim MS, Antao AM, Jo WJ, Kim HJ, Kim SJ, Choi MJ, Ramakrishna S, Kim KS. Bioactive Lipid O-cyclic phytosphingosine-1-phosphate Promotes Differentiation of Human Embryonic Stem Cells into Cardiomyocytes via ALK3/BMPR Signaling. Int J Mol Sci 2021; 22:ijms22137015. [PMID: 34209900 PMCID: PMC8267745 DOI: 10.3390/ijms22137015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.
Collapse
Affiliation(s)
- Ji-Hye Jang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Won-Jun Jo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Hyung-Joon Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Su-Jin Kim
- Axceso Biopharma Co., Ltd., Yongin 16914, Korea; (S.-J.K.); (M.-J.C.)
| | - Myeong-Jun Choi
- Axceso Biopharma Co., Ltd., Yongin 16914, Korea; (S.-J.K.); (M.-J.C.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); (K.-S.K.)
| |
Collapse
|
7
|
Corrêa T, Feltes BC, Gonzalez EA, Baldo G, Matte U. Network Analysis Reveals Proteins Associated with Aortic Dilatation in Mucopolysaccharidoses. Interdiscip Sci 2021; 13:34-43. [PMID: 33475959 DOI: 10.1007/s12539-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Mucopolysaccharidoses are caused by a deficiency of enzymes involved in the degradation of glycosaminoglycans. Heart diseases are a significant cause of morbidity and mortality in MPS patients, even in conditions in which enzyme replacement therapy is available. In this sense, cardiovascular manifestations, such as heart hypertrophy, cardiac function reduction, increased left ventricular chamber, and aortic dilatation, are among the most frequent. However, the downstream events which influence the heart dilatation process are unclear. Here, we employed systems biology tools together with transcriptomic data to investigate new elements that may be involved in aortic dilatation in Mucopolysaccharidoses syndrome. We identified candidate genes involved in biological processes related to inflammatory responses, deposition of collagen, and lipid accumulation in the cardiovascular system that may be involved in aortic dilatation in the Mucopolysaccharidoses I and VII. Furthermore, we investigated the molecular mechanisms of losartan treatment in Mucopolysaccharidoses I mice to underscore how this drug acts to prevent aortic dilation. Our data indicate that the association between the TGF-b signaling pathway, Fos, and Col1a1 proteins can play an essential role in aortic dilation's pathophysiology and its subsequent improvement by losartan treatment.
Collapse
Affiliation(s)
- Thiago Corrêa
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil.
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020; 38:741-755. [PMID: 32129551 PMCID: PMC7891398 DOI: 10.1002/stem.3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two‐stage genome‐wide CRISPR‐knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA‐Seq profiling of the ZIC2‐mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA‐seq analysis showed the ZIC2 mutants affected the apelin receptor‐related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome‐wide unbiased CRISPR‐knockout screen to identify the key steps in human mesoderm precursor cell‐ and heart progenitor cell‐fate determination during in vitro hPSC cardiogenesis.
Collapse
Affiliation(s)
- Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie S Foo
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ran Yang
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bylund
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|