1
|
Huang Z, Wang S, Wen Y, Jiang Q, Tang Y, Duan B, Wang Q, Li J, Han L, Huang F, Huang B. Identifying potential active ingredients from pomegranate in treating anemia: CPA3 and SOX4 are key proteins. Int J Biol Macromol 2025; 284:138124. [PMID: 39608521 DOI: 10.1016/j.ijbiomac.2024.138124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Fanconi anemia is a rare hereditary blood disorder that usually manifests as bone marrow failure, dysplasia, cancer susceptibility and anemia. Pomegranate, as a "secret" for people in Xinjiang, China and India, is commonly used for treating different types of anemia. OBJECTIVE This study aimed to identify potential proteins of FA and to discover potential drugs from pomegranates. METHODS Firstly, we downloaded gene expression datasets of myeloid cells from FA patients from the GEO database and screened for key differential genes using weighted gene co-expression network analysis and machine learning algorithms. Next, subcellular localization and external validation datasets were used to verify the reliability of genes. Finally, molecular docking and molecular dynamics simulation were used to predict potential drugs for treating FA with pomegranate. RESULTS After screening by WGCNA and machine learning algorithms and an external validation set, SOX4 and CPA3 were retained and were highly expressed in erythroid cells of the bone marrow. Based on the above two protein structures, coumaric acid 4-O-glucoside (-8.212 Kcal/mol) and kaempferol-3-O-neohesperidoside (-7.128 Kcal/mol) were screened. CONCLUSION SOX4 and CPA3 can be considered as key proteins of FA, coumaric acid-4-O-glucoside and kaempferol-3-O-neohesperidin have been found to have therapeutic potency for FA.
Collapse
Affiliation(s)
- Zhuang Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Shanshan Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Yuxin Wen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Qi Jiang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Yiting Tang
- School of Basic Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Bailu Duan
- School of Basic Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Qiong Wang
- School of Basic Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Jinjin Li
- School of Basic Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Lintao Han
- Key Laboratory of Traditional Chinese Medicine Resources and Prescription, Ministry of Education, Wuhan, Hubei 430065, China
| | - Fang Huang
- School of Basic Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China.
| | - Bisheng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China.
| |
Collapse
|
2
|
Liu Y, Pei S, Wang X, Li X, Long Y, Sun S, Meng C, Feng F. Effect of the Deubiquitinating Peptidase 7 (USP7) on Hepatitis B Virus (HBV) Replication and the Antiviral Efficacy of Entecavir (ETV). Mol Biotechnol 2024:10.1007/s12033-024-01355-8. [PMID: 39715932 DOI: 10.1007/s12033-024-01355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Hepatitis B is a viral infection of the liver caused by the hepatitis B virus (HBV). Entecavir (ETV) is considered the primary therapeutic option for HBV treatment, primarily functioning by inhibiting HBV replication. Ubiquitin-specific peptidase 7 (USP7), a deubiquitinating enzyme, plays a crucial role in regulating DNA repair mechanisms. This article aims to investigate the role of USP7 in HBV replication and its potential to enhance the antiviral efficacy of ETV, while exploring the underlying mechanisms involved. HBV infection is closely associated with the development of liver cancer. In this study, we selected the HepG2.2.15 cell line, which was stably HepG2 cell transfected with two complete HBV genomes. HepG2.2.15 supports HBV replication, assembly, and secretion. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) assays were subsequently employed to measure USP7 mRNA and protein levels in both cell lines. The USP7 gene was silenced using small interfering RNA (siRNA), cells were transfected with siRNA-USP7 using Lipo6000™ Transfection Reagent, after which we assessed HBV replication, the levels of HBsAg, and HBeAg following 24, 48, and 72 h of culture in HepG2.2.15 cells. Afterwards, HepG2.2.15 cells were divided into several groups: control, USP7 gene silencing by siRNA group (siRNA-USP7), USP7 silencing negative control group (siRNA-NC), ETV drug treatment (ETV), ETV drug treatment combined with USP7 gene silencing by siRNA group (ETV + siRNA-USP7), and ETV therapy alongside a negative control for siRNA silencing (ETV + siRNA-NC). HBV replication, the levels of HBsAg, and HBeAg in the cell supernatant were assessed after 24, 48, and 72 h of culture. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to evaluate cellular damage. Furthermore, qRT-PCR and Western blot techniques were utilized to analyze p53 mRNA and protein levels as potential downstream mechanisms of USP7, along with assessing Bax and Bcl-2 mRNA and protein levels within the p53 signaling pathway. Lastly, we investigated the interaction between USP7 and p53 proteins through co-immunoprecipitation. USP7 protein and mRNA levels were up-regulated in the HepG2.2.15 cell line, and silencing of USP7 inhibited HBV replication. More importantly, HBV replication, HBsAg, and HBeAg levels in the ETV + siRNA-USP7 group were significantly reduced compared to the other groups (P < 0.05), indicating that silencing USP7 enhances the antiviral effect of ETV. Additionally, ALT and AST levels were significantly decreased (P < 0.05), suggesting a reduction in cellular damage. Furthermore, an interaction between USP7 and p53 was observed. Both mRNA and protein levels of p53, as well as its downstream factors Bax and Bcl-2 in the ETV + siRNA-USP7 group, were significantly down-regulated (P < 0.05), implying that USP7 is involved in regulating the p53 pathway. Decreasing of deubiquitinating peptidase 7 expression in a human hepatoma model enhanced antiviral effect of entecavir and reduced cellular damage caused by the hepatitis B virus.
Collapse
Affiliation(s)
- Yue Liu
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China
| | - Shengfei Pei
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China
| | - Xue Wang
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China
| | - Xueying Li
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China
| | - Yifei Long
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China
| | - Shufeng Sun
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Chunyan Meng
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China.
- Hebei Coordinated Innovation Center of Occupational Health and SafetySchool of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
| | - Fumin Feng
- School of Public Health, North China University of Science of Technology, Tangshan, 062310, Hebei, China.
- Hebei Coordinated Innovation Center of Occupational Health and SafetySchool of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China.
| |
Collapse
|
3
|
Chen Z, Yang C, Ji J, Chen M, Han B. Umbilical Cord Blood-Derived Cells Can Reconstruct Hematopoiesis in an Aplastic Anemia Animal Model. Stem Cells Int 2024; 2024:4095268. [PMID: 39161367 PMCID: PMC11333133 DOI: 10.1155/2024/4095268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/16/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To explore the efficacy and the mechanism of the umbilical cord-derived cells combined with cyclosporine A (CsA) in treating aplastic anemia (AA) in mice. Methods Immune-mediated AA model mice were treated with CsA + UC mesenchymal stem cells (UC-MSC), CsA + umbilical cord blood regulatory T cells (UCB-Treg), UC-MSC, UCB-Treg, CsA alone, or blank control, respectively (n = 9 mice/group). CsA and the cell infusion was administered on d0. Routine peripheral blood testing was performed once weekly; bone marrow colony culture, bone marrow cell flow cytometry, peripheral blood T cell subsets, and serum inflammatory cytokines tests were performed on d14. Transcriptome sequencing was performed for cells from CsA + UC-MSC, CsA + UCB-Treg, and CsA groups to detect the possible related genes. Gene function cluster and signal pathway enrichment analysis were also performed. Results Blank control mice died due to pancytopenia within 21 days, whereas mice in other groups survived for >28 days. On d14, the CsA + UC-MSC and CsA + UCB-Treg groups had higher white blood cell (WBC) counts than the other groups (p < 0.05), along with higher burst-forming unit (BFU) and colony-forming unit-granulocyte, macrophage (CFU-GM) counts (p < 0.01). The CsA + UC-MSC group had the highest BFU count (p < 0.01). The CsA + UC-MSC and CsA + UCB-Treg groups exhibited the highest bone marrow CD34+ cell proportion (9.68% ± 1.35% and 8.17% ± 0.53%, respectively; p < 0.01). Tumor necrosis factor (TNF)-α and interleukin (IL)-2 levels in the CsA + UC-MSC group (p < 0.05) and TNF-α, interleukin-2, and interferon (INF)-γ levels in the CsA + UC-Treg group (p < 0.01) were lower than those in the CsA group. Compared with CsA treatment, CsA + UC-MSC significantly downregulated the histone methylation pathway (p < 0.05), whereas CsA + UCB-Treg significantly upregulated energy metabolism processes (p < 0.05). Treatment with CsA + UC-MSC upregulated superoxide dismutase activity compared with CsA + UCB-Treg treatment. Conclusions Adding UC-MSC or UCB-Treg to CsA markedly enhanced the reconstruction of hematopoiesis in AA mice, with UC-MSC eliciting greater efficiency than UCB-Treg. Accordingly, the addition of these cells could further improve immune abnormalities.
Collapse
Affiliation(s)
- Zesong Chen
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Department of OncologyCancer Hospital Chinese Academy of Medical SciencesShenzhen Hospital, Shenzhen, China
| | - Chen Yang
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jiang Ji
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Miao Chen
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bing Han
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
6
|
Yan S, Li Q, Li S, Ai Z, Yuan D. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 2022; 49:9877-9891. [PMID: 35553342 DOI: 10.1007/s11033-022-07513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China.
| | - Qianqian Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Shi Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Zhiying Ai
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Dongdong Yuan
- Shandong Academy of Pharmaceutical Sciences, Ji'nan, 250101, China
| |
Collapse
|
7
|
Zhu J, Huang Q, Liu S, Peng X, Xue J, Feng T, Huang W, Chen Z, Lai K, Ji Y, Wang M, Yuan R. Construction of a Novel LncRNA Signature Related to Genomic Instability to Predict the Prognosis and Immune Activity of Patients With Hepatocellular Carcinoma. Front Immunol 2022; 13:856186. [PMID: 35479067 PMCID: PMC9037030 DOI: 10.3389/fimmu.2022.856186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Genomic instability (GI) plays a crucial role in the development of various cancers including hepatocellular carcinoma. Hence, it is meaningful for us to use long non-coding RNAs related to genomic instability to construct a prognostic signature for patients with HCC. Methods Combining the lncRNA expression profiles and somatic mutation profiles in The Cancer Genome Atlas database, we identified GI-related lncRNAs (GILncRNAs) and obtained the prognosis-related GILncRNAs through univariate regression analysis. These lncRNAs obtained risk coefficients through multivariate regression analysis for constructing GI-associated lncRNA signature (GILncSig). ROC curves were used to evaluate signature performance. The International Cancer Genomics Consortium (ICGC) cohort, and in vitro experiments were used for signature external validation. Immunotherapy efficacy, tumor microenvironments, the half-maximal inhibitory concentration (IC50), and immune infiltration were compared between the high- and low-risk groups with TIDE, ESTIMATE, pRRophetic, and ssGSEA program. Results Five GILncRNAs were used to construct a GILncSig. It was confirmed that the GILncSig has good prognostic evaluation performance for patients with HCC by drawing a time-dependent ROC curve. Patients were divided into high- and low-risk groups according to the GILncSig risk score. The prognosis of the low-risk group was significantly better than that of the high-risk group. Independent prognostic analysis showed that the GILncSig could independently predict the prognosis of patients with HCC. In addition, the GILncSig was correlated with the mutation rate of the HCC genome, indicating that it has the potential to measure the degree of genome instability. In GILncSig, LUCAT1 with the highest risk factor was further validated as a risk factor for HCC in vitro. The ESTIMATE analysis showed a significant difference in stromal scores and ESTIMATE scores between the two groups. Multiple immune checkpoints had higher expression levels in the high-risk group. The ssGSEA results showed higher levels of tumor-antagonizing immune cells in the low-risk group compared with the high-risk group. Finally, the GILncSig score was associated with chemotherapeutic drug sensitivity and immunotherapy efficacy of patients with HCC. Conclusion Our research indicates that GILncSig can be used for prognostic evaluation of patients with HCC and provide new insights for clinical decision-making and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tangbin Feng
- Department of Surgery, II, Duchang County Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Wulang Huang
- Department of General Surgery, Affiliated Hospital of Jinggangshan University, Jian, China
| | - Zhimeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kuiyuan Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yufei Ji
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Miaomiao Wang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin 2021; 42:1547-1555. [PMID: 33510458 PMCID: PMC8463536 DOI: 10.1038/s41401-020-00588-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/02/2023] Open
Abstract
TIGAR (TP53-induced glycolysis and apoptosis regulator) is the downstream target gene of p53, contains a functional sequence similar to 6-phosphofructose kinase/fructose-2, 6-bisphosphatase (PFKFB) bisphosphatase domain. TIGAR is mainly located in the cytoplasm; in response to stress, TIGAR is translocated to nucleus and organelles, including mitochondria and endoplasmic reticulum to regulate cell function. P53 family members (p53, p63, and p73), some transcription factors (SP1 and CREB), and noncoding miRNAs (miR-144, miR-885-5p, and miR-101) regulate the transcription of TIGAR. TIGAR mainly functions as fructose-2,6-bisphosphatase to hydrolyze fructose-1,6-diphosphate and fructose-2,6-diphosphate to inhibit glycolysis. TIGAR in turn facilitates pentose phosphate pathway flux to produce nicotinamide adenine dinucleotide phosphate (NADPH) and ribose, thereby promoting DNA repair, and reducing intracellular reactive oxygen species. TIGAR thus maintains energy metabolism balance, regulates autophagy and stem cell differentiation, and promotes cell survival. Meanwhile, TIGAR also has a nonenzymatic function and can interact with retinoblastoma protein, protein kinase B, nuclear factor-kappa B, hexokinase 2, and ATP5A1 to mediate cell cycle arrest, inflammatory response, and mitochondrial protection. TIGAR might be a potential target for the prevention and treatment of cardiovascular and neurological diseases, as well as cancers.
Collapse
|
10
|
Wu L, Li X, Lin Q, Chowdhury F, Mazumder MH, Du W. FANCD2 and HES1 suppress inflammation-induced PPARɣ to prevent haematopoietic stem cell exhaustion. Br J Haematol 2021; 192:652-663. [PMID: 33222180 PMCID: PMC7856217 DOI: 10.1111/bjh.17230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
The Fanconi anaemia protein FANCD2 suppresses PPARƔ to maintain haematopoietic stem cell's (HSC) function; however, the underlying mechanism is not known. Here we show that FANCD2 acts in concert with the Notch target HES1 to suppress inflammation-induced PPARƔ in HSC maintenance. Loss of HES1 exacerbates FANCD2-KO HSC defects. However, deletion of HES1 does not cause more severe inflammation-mediated HSC defects in FANCD2-KO mice, indicating that both FANCD2 and HES1 are required for limiting detrimental effects of inflammation on HSCs. Further analysis shows that both FANCD2 and HES1 are required for transcriptional repression of inflammation-activated PPARg promoter. Inflammation orchestrates an overlapping transcriptional programme in HSPCs deficient for FANCD2 and HES1, featuring upregulation of genes in fatty acid oxidation (FAO) and oxidative phosphorylation. Loss of FANCD2 or HES1 augments both basal and inflammation-primed FAO. Targeted inhibition of PPARƔ or the mitochondrial carnitine palmitoyltransferase-1 (CPT1) reduces FAO and ameliorates HSC defects in inflammation-primed HSPCs deleted for FANCD2 or HES1 or both. Finally, depletion of PPARg or CPT1 restores quiescence in these mutant HSCs under inflammatory stress. Our results suggest that this novel FANCD2/HES1/PPARƔ axis may constitute a key component of immunometabolic regulation, connecting inflammation, cellular metabolism and HSC function.
Collapse
Affiliation(s)
- Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Fabliha Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Md H. Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, WV
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Pagano G, Tiano L, Pallardó FV, Lyakhovich A, Mukhopadhyay SS, Di Bartolomeo P, Zatterale A, Trifuoggi M. Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management. Redox Biol 2021; 40:101860. [PMID: 33445068 PMCID: PMC7806517 DOI: 10.1016/j.redox.2021.101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients’ cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60121, Ancona, Italy
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010, Valencia, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | | | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
12
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
13
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|