1
|
Zhao C, Li X, Pan X, Xu J, Jiang R, Li Y. LINC02532 by Mediating miR-541-3p/HMGA1 Axis Exerts a Tumor Promoter in Breast cancer. Mol Biotechnol 2025; 67:196-208. [PMID: 38030946 DOI: 10.1007/s12033-023-00995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The newly discovered LINC02532 is abnormally expressed in a variety of cancers and promotes cancer progression. The research proposed to discover the biological and molecular mechanisms of LINC02532 in breast cancer (BCa). In the resected BCa tissue samples and adjacent normal tissues, LINC02532, miR-541-3p, and High Mobility Group A1 (HMGA1) levels were determined. Cell function experiments were carried out on the premise of cell transfection with relevant plasmids. Based on that, the influence of LINC02532, miR-541-3p, and HMGA1 on MCF-7 cell activities (proliferation, migration, invasion, cell cycle, and apoptosis) was determined, as well as on EMT. Additionally, animal experiments were allowed to support cell experimental conclusions on LINC02532. Finally, the mechanistic network of LINC02532, miR-541-3p, and HMGA1 was identified. It was BCa tissues highly expressing LINC02532 and HMGA1, while lowly expressing miR-541-3p. Functionally, LINC02532 depletion repressed the activities and EMT process of MCF-7 cells. Silencing LINC02532 delayed tumor growth in mice. In terms of mechanism, LINC02532 mainly existed in the cytoplasm and could mediate HMGA1 expression by absorbing miR-541-3p. The findings offer new insights into the molecular mechanisms of LINC02532 in BCa and, more importantly, new strategies for the clinical treatment of BCa.
Collapse
Affiliation(s)
- ChunMing Zhao
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Xiao Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - XueQiang Pan
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - JiaWen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| | - YuYang Li
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
2
|
Shaikh M, Doshi G. Unraveling non-coding RNAs in breast cancer: mechanistic insights and therapeutic potential. Med Oncol 2024; 42:37. [PMID: 39730979 DOI: 10.1007/s12032-024-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Breast cancer remains a leading global health challenge requiring innovative, therapeutic strategies to improve patient outcomes. This review explores the pivotal roles of non-coding RNAs (ncRNAs), including long non-coding RNA, micro RNA, and circular RNA, in breast cancer biology. We highlight how these molecules regulate critical signaling pathways, influence tumor microenvironments, and contribute to treatment resistance. Our findings underscore the potential of ncRNAs as biomarkers for early diagnosis and as treatment targets for personalized treatment strategies. To pave the way for innovative cancer management approaches, we investigate the complex interactions of ncRNAs and their impact on tumor progression. This comprehensive review enhances our understanding of breast cancer biology while emphasizing the translational significance of ncRNA research in developing effective treatment strategies. Additional research and clinical studies are required to confirm the diagnostic and medicinal value of ncRNAs in breast cancer. Investigating the complex networks of ncRNA interactions and their links to other biological pathways can lead to the discovery of new treatment targets. Furthermore, leveraging advanced technologies, such as machine learning and multi-omics methods, will be critical in improving our understanding of ncRNAs biomarkers and translating these insights into impactful clinical applications.
Collapse
Affiliation(s)
- Muqtada Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
3
|
Obaid Saleh R, Shbeer AM, Jetti R, Ahmed Robadi I, Hjazi A, Hussein Kareem A, Noori Shakir M, Qasim Alasheqi M, Alawadi A, Haslany A. Association between lncRNAs with stem cells in cancer; a particular focus on lncRNA-CSCs axis in cancer immunopathogenesis. Int Immunopharmacol 2024; 136:112306. [PMID: 38833843 DOI: 10.1016/j.intimp.2024.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
4
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
6
|
Yao W, Wang L, Liu F, Xia L. The role of long non-coding RNAs in breast cancer microenvironment. Pathol Res Pract 2023; 248:154707. [PMID: 37506626 DOI: 10.1016/j.prp.2023.154707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The tumor microenvironment (TME), which includes tumor cells, fibroblasts, endothelial cells, immune cells, and blood vessels, can affect tumor growth and metastasis. Studies have shown that tumor cells, fibroblasts, and macrophages can promote the development of tumors, while T and B cells can inhibit tumor progression. The crosstalk among different cells within the TME needs further study. Long non-coding RNAs (lncRNAs) are involved in biological processes, including cell proliferation, migration, and differentiation. The abnormal expression of certain lncRNAs is correlated with the progression of breast cancer and has been proven as diagnostic markers in various cancers, including breast cancer. In breast cancer, recent studies have shown that tumor cell- and non-tumor cell-derived lncRNAs can affect various facets of tumor progression, including growth, proliferation, and migration of tumor cells. Interestingly, in addition to being regulated by lncRNAs derived from tumor and non-tumor cells, the TME can regulate the expression of lncRNAs in tumor cells, fibroblasts, and macrophages, influencing their phenotype and function. However, the detailed molecular mechanisms of these phenomena remain unclear in the breast cancer microenvironment. Currently, many studies have shown that TME-associated lncRNAs are potential diagnostic and therapeutic targets for breast cancer. Considering that TME and lncRNAs can regulate each other, we summarize the role of lncRNAs in the breast cancer microenvironment and the potential of lncRNAs as valuable diagnostic markers.
Collapse
Affiliation(s)
- Wenwu Yao
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
7
|
Huang Y, Mo W, Ding X, Ding Y. Long non-coding RNAs in breast cancer stem cells. Med Oncol 2023; 40:177. [PMID: 37178429 DOI: 10.1007/s12032-023-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer, one of the most commonly diagnosed cancers worldwide, is a heterogeneous disease with high rates of recurrence and metastasis that contribute to its high mortality rate. Breast cancer stem cells (BCSCs) are a small but significant subset of heterogeneous breast cancer cells that possess stem cell characteristics such as self-renewal and differentiation abilities that may drive metastasis and recurrence. Long non-coding RNAs (lncRNAs) are a class of RNAs that are longer than 200 nucleotides in length and do not possess protein-coding properties. An increasing number of studies have shown that some lncRNAs are abnormally expressed in BCSCs, and have great biological significance in the occurrence, progression, invasion, and metastasis of various cancers. However, the importance of lncRNAs, as well as the molecular mechanisms that regulate and promote the stemness of BCSCs, are still poorly understood. In the current review, we aim to summarize recent studies that highlight the role of lncRNAs in tumor occurrence and progression through BCSCs. In addition, the utility of lncRNAs as biomarkers of breast cancer progression, and their potential use as therapeutic targets for treatment of breast cancer, will be discussed.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Oncology, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenju Mo
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaowen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
8
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
9
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
10
|
Tu Z, Karnoub AE. Mesenchymal stem/stromal cells in breast cancer development and management. Semin Cancer Biol 2022; 86:81-92. [PMID: 36087857 DOI: 10.1016/j.semcancer.2022.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) encompass a heterogeneous population of fibroblastic progenitor cells that reside in multiple tissues around the body. They are endowed with capacities to differentiate into multiple connective tissue lineages, including chondrocytes, adipocytes, and osteoblasts, and are thought to function as trophic cells recruited to sites of injury and inflammation where they contribute to tissue regeneration. In keeping with these roles, MSCs also to home to sites of breast tumorigenesis, akin to their migration to wounds, and participate in tumor stroma formation. Mounting evidence over the past two decades has described the critical regulatory roles for tumor-associated MSCs in various aspects of breast tumor pathogenesis, be it tumor initiation, growth, angiogenesis, tumor microenvironment formation, immune evasion, cancer cell migration, invasion, survival, therapeutic resistance, dissemination, and metastatic colonization. In this review, we present a brief summary of the role of MSCs in breast tumor development and progression, highlight some of the molecular frameworks underlying their pro-malignant contributions, and present evidence of their promising utility in breast cancer therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Research Institute, West Roxbury, MA 02132, USA.
| |
Collapse
|
11
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A review on the role of LINC01133 in cancers. Cancer Cell Int 2022; 22:270. [PMID: 36042493 PMCID: PMC9429693 DOI: 10.1186/s12935-022-02690-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Long Intergenic Non-Protein Coding RNA 1133 (LINC01133) is a long non-coding RNA (lncRNA) which interacts with miR-106a-3p, miR-576-5p, miR-495-3p, miR-205, miR-199a-5p, miR-4784, miR-30a-5p, miR-199a, miR-30b-5p, miR-216a -5p and miR-422a, thus increasing expression of mRNA targets of these miRNAs. LINC01133 can affect cancer metastasis through regulation of epithelial-mesenchymal transition program. Dysregulation of this lncRNA has been repeatedly detected in the process of tumorigenesis. In this review, we summarize the results of various studies that reported dysregulation of LINC01133 in different samples and described the role of this lncRNA as a marker for these disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Hu X, Zhang Q, Xing W, Wang W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front Pharmacol 2022; 13:814971. [PMID: 35814205 PMCID: PMC9263262 DOI: 10.3389/fphar.2022.814971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective (s): In this mini-review, we aimed to discuss the Wnt/β-catenin signaling pathway modulation in triple-negative breast cancer, particularly the contribution of lncRNAs and miRNAs in its regulation and their possible entwining role in breast cancer pathogenesis, proliferation, migration, or malignancy.Background: Malignant tumor formation is very high for breast cancer in women and is a leading cause of death all over the globe. Among breast cancer subtypes, triple-negative breast cancer is rife in premenopausal women, most invasive, and prone to metastasis. Complex pathways are involved in this cancer’s pathogenesis, advancement, and malignancy, including the Wnt/β-catenin signaling pathway. This pathway is conserved among vertebrates and is necessary for sustaining cell homeostasis. It is regulated by several elements such as transcription factors, enhancers, non-coding RNAs (lncRNAs and miRNAs), etc.Methods: We evaluated lncRNAs and miRNAs differentially expressed in triple-negative breast cancer (TNBC) from the cDNA microarray data set literature survey. Using in silico analyses combined with a review of the current literature, we anticipated identifying lncRNAs and miRNAs that might modulate the Wnt/β-catenin signaling pathway.Result: The miRNAs and lncRNAs specific to triple-negative breast cancer have been identified based on literature and database searches. Tumorigenesis, metastasis, and EMT were all given special attention. Apart from cross-talk being essential for TNBC tumorigenesis and treatment outcomes, our results indicated eight upregulated and seven downregulated miRNAs and 19 upregulated and three downregulated lncRNAs that can be used as predictive or diagnostic markers. This consolidated information could be useful in the clinic and provide a combined literature resource for TNBC researchers working on the Wnt/β-catenin miRNA/lncRNA axis.Conclusion: In conclusion, because the Wnt pathway and miRNAs/lncRNAs can modulate TNBC, their intertwinement results in a cascade of complex reactions that affect TNBC and related processes. Their function in TNBC pathogenesis has been highlighted in molecular processes underlying the disease progression.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Wan Wang,
| |
Collapse
|
14
|
Jiang S, Zhang Q, Li J, Raziq K, Kang X, Liang S, Sun C, Liang X, Zhao D, Fu S, Cai M. New Sights Into Long Non-Coding RNA LINC01133 in Cancer. Front Oncol 2022; 12:908162. [PMID: 35747817 PMCID: PMC9209730 DOI: 10.3389/fonc.2022.908162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
LINC01133 is a long intergenic non-coding RNA that regulates malignancy in several cancers, including those of the digestive, female reproductive, respiratory, and urinary system. LINC01133 is an extensively studied lncRNA that is highly conserved, and its relatively stable expression is essential for its robust biological function. Its expression is highly tissue-specific with a distinct subcellular localization. It functions as an oncogene or a tumor suppressor gene in different cancers via multiple mechanisms, such as those that involve competing with endogenous RNA and binding to RNA-binding proteins or DNA. Moreover, the secretion and transportation of LINC01133 by extracellular vesicles in the tumor micro-environment is regulated by other cells in the tumor micro-environment. To date, two mechanisms, an increase in copy number and regulation of transcription elements, have been found to regulate LINC01133 expression. Clinically, LINC01133 is an ideal marker for cancer prognosis and a potential therapeutic target in cancer treatment regimes. In this review, we aimed to summarize the aforementioned information as well as posit future directions for LINC01133 research.
Collapse
Affiliation(s)
- Shengnan Jiang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qian Zhang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Khadija Raziq
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xinyu Kang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shiyin Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chaoyue Sun
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Di Zhao
- Department of Genecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- *Correspondence: Mengdi Cai,
| |
Collapse
|
15
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Sharma U, Barwal TS, Murmu M, Acharya V, Pant N, Dey D, Vivek, Gautam A, Bazala S, Singh I, Azzouz F, Bishayee A, Jain A. Clinical potential of long non-coding RNA LINC01133 as a promising biomarker and therapeutic target in cancers. Biomark Med 2022; 16:349-369. [PMID: 35195032 DOI: 10.2217/bmm-2021-0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, long intergenic non-protein coding RNA 01133 (LINC01133) was identified as a novel transcript in cancers. It modulates various hallmarks of cancers and acts as oncogenic in some cancers while tumor-suppressive in others. Furthermore, the expression of LINC01133 correlates with tumor size, advanced tumor node metastasis stage and lymphatic node metastasis, Ki-67 levels and overall survival of patients. Herein, the authors provide an in-depth analysis describing how LINC01133 modulates the multiple cancer-associated signaling pathways and the pathogenesis of various malignancies and treatment regimens. Based on the role played by LINC01133, the authors propose LINC01133 as both a potential biomarker and a therapeutic target in cancer.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Masang Murmu
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Varnali Acharya
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Neha Pant
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Damayanti Dey
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Vivek
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ashima Gautam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Sonali Bazala
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ipsa Singh
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Farah Azzouz
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| |
Collapse
|
18
|
Gao Y, Liu J, Cai B, Chen Q, Wang G, Lu Z, Jiang K, Miao Y. Development of epithelial-mesenchymal transition-related lncRNA signature for predicting survival and immune microenvironment in pancreatic cancerwithexperiment validation. Bioengineered 2021; 12:10553-10567. [PMID: 34854360 PMCID: PMC8809919 DOI: 10.1080/21655979.2021.2000197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) have crucial function in epithelial–mesenchymal transition (EMT) in pancreatic cancer. It is necessary to comprehensively analyze the potential role of EMT-related lncRNA in pancreatic cancer. In the present study, genomic data of pancreatic cancer from the TCGA database were downloaded and we found 368 EMT-related lncRNAs. According to the expression characteristics of prognostic-related lncRNAs, all samples could be divided into two clusters with different clinical outcomes and different tumor microenvironments. Moreover, an eleven EMT-related lncRNAs signature was established and verified. Patients with pancreatic cancer in the high-risk group had a shorter overall survival than those in the low-risk group and the signature could act as an independent prognostic factor. Further analysis suggested that the EMT-related lncRNAs might affect the prognosis of patients through immune mechanisms. All findings indicated that the signature and eleven lncRNAs might serve as potential prognostic biomarkers and therapeutic targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yong Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baobao Cai
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Wang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zipeng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kuirong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pancreas Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
20
|
Multifaceted roles of long non-coding RNAs in triple-negative breast cancer: biology and clinical applications. Biochem Soc Trans 2021; 48:2791-2810. [PMID: 33258920 DOI: 10.1042/bst20200666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.
Collapse
|
21
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
22
|
Hua Z, White J, Zhou J. Cancer stem cells in TNBC. Semin Cancer Biol 2021; 82:26-34. [PMID: 34147641 DOI: 10.1016/j.semcancer.2021.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is a broad collection of breast cancer that tests negative for estrogen receptors (ER), progesterone receptors (PR), and excess human epidermal growth factor receptor 2 (HER2) protein. TNBC is considered to have poorer prognosis than other types of breast cancer because of a lack of effective therapeutic targets. The success of precision cancer therapies relies on the clarification of key molecular mechanisms that drive tumor growth and metastasis; however, TNBC is highly heterogeneous in terms of their cellular lineage composition and the molecular nature within each individual case. In particular, the rare and sometimes slow cycling cancer stem cells (CSCs) can provide effective means for TNBC to resist various treatments. Single cell analysis technologies, including single-cell RNA-seq (scRNA-seq) and proteomics, provide an avenue to unravel patient-level intratumoral heterogeneity by identifying CSCs populations, CSC biomarkers and the range of tumor microenvironment cellular constituents that contribute to tumor growth. This review discusses the emerging evidence for the role of CSCs in driving TNBC incidence and the therapeutic implications in manipulating molecular signaling against this rare cell population for the control of this deadly disease.
Collapse
Affiliation(s)
- Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jason White
- Tuskegee University, Center for Cancer Research, Tuskegee, AL, 36830, USA
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
23
|
Tu Z, Schmoellerl J, Mariani O, Zheng Y, Hu Y, Vincent-Salomon A, Karnoub AE. The LINC01119-SOCS5 axis as a critical theranostic in triple-negative breast cancer. NPJ Breast Cancer 2021; 7:69. [PMID: 34059683 PMCID: PMC8166834 DOI: 10.1038/s41523-021-00259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
The development of triple-negative breast cancer (TNBC) is critically regulated by certain tumor-microenvironment-associated cells called mesenchymal stem/stromal cells (MSCs), which we and others have shown promote TNBC progression by activating pro-malignant signaling in neighboring cancer cells. Characterization of these cascades would better our understanding of TNBC biology and bring about therapeutics that eliminate the morbidity and mortality associated with advanced disease. Here, we focused on the emerging class of RNAs called long non-coding RNAs or lncRNAs and utilized a MSC-supported TNBC progression model to identify specific family members of functional relevance to TNBC pathogenesis. Indeed, although some have been described to play functional roles in TNBC, activities of lncRNAs as mediators of tumor-microenvironment-driven TNBC development remain to be fully explored. We report that MSCs stimulate robust expression of LINC01119 in TNBC cells, which in turn induces suppressor of cytokine signaling 5 (SOCS5), leading to accelerated cancer cell growth and tumorigenesis. We show that LINC01119 and SOCS5 exhibit tight correlation across multiple breast cancer gene sets and that they are highly enriched in TNBC patient cohorts. Importantly, we present evidence that the LINC01119-SOCS5 axis represents a powerful prognostic indicator of adverse outcomes in TNBC patients, and demonstrate that its repression severely impairs cancer cell growth. Altogether, our findings identify LINC01119 as a major driver of TNBC development and delineate critical non-coding RNA theranostics of potential translational utility in the management of advanced TNBC, a class of tumors in most need of effective and targeted therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Johannes Schmoellerl
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yi Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Malla RR, Farran B, Nagaraju GP. Understanding the function of the tumor microenvironment, and compounds from marine organisms for breast cancer therapy. World J Biol Chem 2021; 12:15-37. [PMID: 33815682 PMCID: PMC8006057 DOI: 10.4331/wjbc.v12.i2.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The pathology and physiology of breast cancer (BC), including metastasis, and drug resistance, is driven by multiple signaling pathways in the tumor microenvironment (TME), which hamper antitumor immunity. Recently, long non-coding RNAs have been reported to mediate pathophysiological develop-ments such as metastasis as well as immune suppression within the TME. Given the complex biology of BC, novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes. In this review, we describe the advances in the biology of breast neoplasia, including cellular and molecular biology, heterogeneity, and TME. We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC. Finally, we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms, crustaceans, and fishes and their synergistic effects in combination with other anticancer drugs. Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development, thus assisting current therapeutic regimens.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry and Bioinformatics, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, United States
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
26
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
LncRNAs and microRNAs as Essential Regulators of Stemness in Breast Cancer Stem Cells. Biomolecules 2021; 11:biom11030380. [PMID: 33802575 PMCID: PMC7998729 DOI: 10.3390/biom11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is an aggressive disease with a high incidence in women worldwide. Two decades ago, a controversial hypothesis was proposed that cancer arises from a subpopulation of “tumor initiating cells” or “cancer stem cells-like” (CSC). Today, CSC are defined as small subset of somatic cancer cells within a tumor with self-renewal properties driven by the aberrant expression of genes involved in the maintenance of a stemness-like phenotype. The understanding of the underlying cellular and molecular mechanisms involved in the maintenance of CSC subpopulation are fundamental in the development and persistence of breast cancer. Nowadays, the hypothesis suggests that genetic and epigenetic alterations give rise to breast cancer stem cells (bCSC), which are responsible for self-renewal, tumor growth, chemoresistance, poor prognosis and low survival in patients. However, the prominence of bCSC, as well as the molecular mechanisms that regulates and promotes the malignant phenotypes, are still poorly understood. The role of non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes has been recently highlighted by a plethora of studies in breast cancer. These ncRNAs positively or negatively impact on different signaling pathways that govern the cancer hallmarks associated with bCSC, making them attractive targets for therapy. In this review, we present a current summary of the studies on the pivotal roles of lncRNAs and microRNAs in the regulation of genes associated to stemness of bCSC.
Collapse
|
28
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
29
|
Wu D, Jia H, Zhang Z, Li S. STAT3-induced HLA-F-AS1 promotes cell proliferation and stemness characteristics in triple negative breast cancer cells by upregulating TRABD. Bioorg Chem 2021; 109:104722. [PMID: 33618253 DOI: 10.1016/j.bioorg.2021.104722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is one of the most common malignances and is a leading cause of cancer-related deaths in women globally. Triple negative breast cancer (TNBC) is a common subtype of BC. Emerging evidence has indicated the crucial roles of long noncoding RNAs (lncRNAs) in the tumorigenesis of TNBC. Our aim was to explore the role and regulatory mechanism of lncRNA HLA-F antisense RNA 1 (HLA-F-AS1) in TNBC cells. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry analysis and western blot analysis were used to measure HLA-F-AS1-mediated cellular behaviors in TNBC. Xenograft tumor assay was applied to assess biological function of HLA-F-AS1 in vivo. Luciferase reporter assay and RNA pull down assay were used to verify the binding ability between molecules. Our findings demonstrated that HLA-F-AS1 expression was significantly upregulated in TNBC tissues and cells, and high level of HLA-F-AS1 indicated the poor prognosis of patients with TNBC. HLA-F-AS1 promoted TNBC progression by facilitating cell proliferation and stemness maintenance and inhibiting cell cycle arrest at G0/G1 stage and apoptosis in vitro as well as inducing tumor growth in vivo. HLA-F-AS1. In addition, signal transducer and activator of transcription 3 (STAT3) transcriptionally induced HLA-F-AS1 upregulation in TNBC cells via interacting with HLA-F-AS1 promoter. Moreover, HLA-F-AS1 acted as the molecular sponge of microRNA 541-3p (miR-541-3p) to elevate TRABD (TraB domain containing) expression in TNBC cells. Rescue experiments confirmed that the decrease of cell proliferation and stemness characteristics under silenced HLA-F-AS1 was rescued by TRABD overexpression in TNBC cells. In conclusion, STAT3-induced HLA-F-AS1 facilitates cell proliferation and stemness characteristics in TNBC by miR-541-3p-dependent upregulation of TRABD, which might provide a potential novel direction for the treatment of TNBC.
Collapse
Affiliation(s)
- Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
30
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
31
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
32
|
Chen FY, Zhou ZY, Zhang KJ, Pang J, Wang SM. Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer Cell Int 2020; 20:508. [PMID: 33088216 PMCID: PMC7568413 DOI: 10.1186/s12935-020-01580-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background As an aggressive subtype of breast cancer with a high risk of recurrence, triple-negative breast cancer (TNBC) lacks available treatment targets. LncRNA MIR100HG promotes cell proliferation in TNBC. However, few studies have investigated the molecular mechanism of MIR100HG in TNBC. Thus, additional in-depth investigations are needed to unravel its associated regulatory mechanism. Methods MIR100HG and miR-5590-3p expression in TNBC tissue samples and cell lines was detected by RT-qPCR. Flow cytometry, transwell, wound-healing, CCK8 and colony formation assays were performed to analyse cell apoptosis, cell cycle, invasion, migration and proliferation. The protein expression of orthodenticle homeobox 1 (OTX1) and proteins in the ERK/MAPK signalling pathway were assessed by western blot analysis. Bioinformatics and luciferase assay were performed to predict and validate the interaction between MIR100HG and miR-5590-3p as well as OTX1 and miR-5590-3p. RNA immunoprecipitation (RIP) was used to detect the interaction between MIR100HG and miR-5590-3p. Subcutaneous tumour growth was observed in nude mice. Immunohistochemistry (IHC) analysis was used to assess OTX1 expression in tumour tissues. Results MIR100HG expression was upregulated, whereas that of miR-5590-3p was downregulated in TNBC. MIR100HG was shown to directly interact with miR-5590-3p. Furthermore, MIR100HG knockdown could promote TNBC cell apoptosis and cell cycle arrest in G0/G1 phase while inhibiting migration, invasion and proliferation. Furthermore, miR-5590-3p inhibition showed the opposite results and could reverse the effect of MIR100HG knockdown in TNBC cells. MiR-5590-3p downregulated the ERK/MAPK signalling pathway, suppressed the migration, invasion and proliferation of TNBC cells and promoted their apoptosis and cell cycle arrest in G0/G1 phase by targeting OTX1. In addition, MIR100HG knockdown inhibited OTX1 expression by upregulating miR-5590-3p in vivo, thereby inhibiting tumour growth. Conclusions MIR100HG promotes the progression of TNBC by sponging miR-5590-3p, thereby upregulating OTX1, suggesting a new potential treatment target for TNBC.
Collapse
Affiliation(s)
- Fei-Yu Chen
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Zhi-Yang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Ke-Jing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Jian Pang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Shou-Man Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
33
|
M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis 2020; 11:728. [PMID: 32908134 PMCID: PMC7481779 DOI: 10.1038/s41419-020-02926-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
As a common female malignancy, triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancers (BC). This study further studied the role of long noncoding RNA (lncRNA) prostate cancer-associated transcript 6 (PCAT6) in TNBC. Functional assays, including EdU, wound healing, transwell, and immunofluorescence staining, revealed the effect of PCAT6 on cell proliferation, migration, and EMT process. The tube-formation assay disclosed the function of PCAT6 on angiogenesis. In vivo assays were also established to explore the impact of PCAT6 on tumor growth and microangiogenesis. The results revealed that PCAT6 boosted TNBC cell proliferation, migration, and angiogenesis both in vitro and in vivo. Then, this study unveiled that M2 macrophage secreted VEGF to stimulate the upregulation of PCAT6, thus promoting angiogenesis in TNBC. Next, through bioinformatics analysis and mechanism assays, we identified that PCAT6 positively regulated VEGFR2 expression via ceRNA pattern and then participated in VEGFR/AKT/mTOR signaling pathway to accelerate angiogenesis. Moreover, PCAT6 bound USP14, a deubiquitinase, to induce the deubiquitination of VEGFR2. On the whole, M2 macrophage-induced upregulation of PCAT6 facilitates TNBC tumorigenesis through modulation of VEGFR2 expression via ceRNA and deubiquitination patterns.
Collapse
|
34
|
Peng L, Jiang J, Tang B, Nice EC, Zhang YY, Xie N. Managing therapeutic resistance in breast cancer: from the lncRNAs perspective. Theranostics 2020; 10:10360-10377. [PMID: 32929354 PMCID: PMC7482807 DOI: 10.7150/thno.49922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is the most common female malignancy and the second leading cause of cancer-related death worldwide. In spite of significant advances in clinical management, the mortality of BC continues to increase due to the frequent occurrence of treatment resistance. Intensive studies have been conducted to elucidate the molecular mechanisms underlying BC therapeutic resistance, including increased drug efflux, altered drug targets, activated bypass signaling pathways, maintenance of cancer stemness, and deregulated immune response. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are intimately involved in BC therapy resistance through multiple modes of action. Therefore, an in-depth understanding of the implication of lncRNAs in resistance to clinical therapies may improve the clinical outcome of BC patients. Here, we highlight the role and underlying mechanisms of lncRNAs in regulating BC treatment resistance with an emphasis on lncRNAs-mediated resistance in different clinical scenarios, and discuss the potential of lncRNAs as novel biomarkers or therapeutic targets to improve BC therapy response.
Collapse
Affiliation(s)
- Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
35
|
Brown JM, Wasson MCD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020; 9:E763. [PMID: 32244924 PMCID: PMC7140662 DOI: 10.3390/cells9030763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.
Collapse
Affiliation(s)
- Justin M Brown
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Marie-Claire D Wasson
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Paola Marcato
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
- Departments of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
36
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
37
|
Prabhu KS, Raza A, Karedath T, Raza SS, Fathima H, Ahmed EI, Kuttikrishnan S, Therachiyil L, Kulinski M, Dermime S, Junejo K, Steinhoff M, Uddin S. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12020351. [PMID: 32033146 PMCID: PMC7072613 DOI: 10.3390/cancers12020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Correspondence: ; Tel.: +974-4439-0966
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | | | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology, Weill Cornell Medicine, Qatar Foundation, Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| |
Collapse
|
38
|
Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L, Yang H. lncRNA SLC7A11-AS1 Promotes Chemoresistance by Blocking SCF β-TRCP-Mediated Degradation of NRF2 in Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:974-985. [PMID: 32036249 PMCID: PMC7013141 DOI: 10.1016/j.omtn.2019.11.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Drug resistance is the major obstacle of gemcitabine-based chemotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC). Many long non-coding RNAs (lncRNAs) are reported to play vital roles in cancer initiation and progression. Here, we report that lncRNA SLC7A11-AS1 is involved in gemcitabine resistance of PDAC. SLC7A11-AS1 is overexpressed in PDAC tissues and gemcitabine-resistant cell lines. Knockdown of SLC7A11-AS1 weakens the PDAC stemness and potentiates the sensitivity of resistant PDAC cells toward gemcitabine in vitro and in vivo. SLC7A11-AS1 promotes chemoresistance through reducing intracellular reactive oxygen species (ROS) by stabilizing nuclear factor erythroid-2-related factor 2 (NRF2), the key regulator in antioxidant defense. Mechanically, SLC7A11-AS1 is co-localized with β-TRCP1 in the nucleus. The exon 3 of SLC7A11-AS1 interacts with the F-box motif of β-TRCP1, the critical domain that recruits β-TRCP1 to the SCFβ-TRCP E3 complex. This interaction prevents the consequent ubiquitination and proteasomal degradation of NRF2 in the nucleus. Our results demonstrate that the overexpression of SLC7A11-AS1 in gemcitabine-resistant PDAC cells can scavenge ROS by blocking SCFβ-TRCP-mediated ubiquitination and degradation of NRF2, leading to a low level of intracellular ROS, which is required for the maintenance of cancer stemness. These findings suggest SLC7A11-AS1 as a therapeutic target to overcome gemcitabine resistance for PDAC treatment.
Collapse
Affiliation(s)
- Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyuan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Jiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
39
|
Xu Z, Liu C, Zhao Q, Lü J, Ding X, Luo A, He J, Wang G, Li Y, Cai Z, Wang Z, Liu J, Liu S, Li W, Yu Z. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol Res 2020; 152:104628. [PMID: 31904506 DOI: 10.1016/j.phrs.2020.104628] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancers (TNBC) are more aggressive due to lacking receptors for hormone therapy and maintaining stemness features in cancer cells. Herein we found long non-coding RNA CCAT2 overexpressed specially in TNBC, and in breast cancer stem cells (BCSC) as well. Enforced overexpression and targeted knockdown demonstrated the oncogenic function of CCAT2 both in vitro and in vivo. CCAT2 promoted the expression of stemness markers including OCT4, Nanog and KLF4, increased mammosphere formation and induced ALDH+ cancer stem cell population in TNBC. A chromosomally adjacent gene OCT4-PG1, as a pseudogene of OCT4, was upregulated by CCAT2, and positively regulated the stemness features of TNBC cells. miR-205 was identified as a target gene of CCAT2 in TNBC. Point-mutation in CCAT2 impaired the sponge inhibition of miR-205. Overexpression of miR-205 rescued the oncogenic phenotypes induced by CCAT2. In addition, Notch2, as a target gene of miR-205, was downregulated by miR-205 and upregulated by CCAT2 in TNBC. Collectively, the current study revealed a novel function of CCAT2 in promoting tumor initiation and progression in TNBC through upregulating OCT4-PG1 expression and activating Notch signaling. These findings not only demonstrated a lncRNA-based therapeutic strategy in treatment of TNBC, but also added a node to the regulatory network of CCAT2 that controls aggressiveness of breast cancer stem cells.
Collapse
Affiliation(s)
- Zhen Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cuiui Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xin Ding
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - An Luo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jia He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoqing Cai
- Tongji University School of Life Science and Technology, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junjun Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Suling Liu
- Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenshu Li
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
40
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
41
|
Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, Alahari SK. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 2019; 39:953-974. [PMID: 31601996 DOI: 10.1038/s41388-019-1040-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer, and the second cause of cancer-related deaths (after lung cancer) among women. Developing tumor metastasis and invasion is the most important cause of death in breast cancer patients. Several key factors participate in breast cancer metastasis including long noncoding RNAs (lncRNAs). lncRNAs are a category of cellular RNAs that are longer than 200 nucleotides in length. Accumulating evidence suggests that lncRNAs have the potential to be promising diagnostic, prognostic biomarkers and therapeutic targets in breast cancer. Understanding the role of lncRNAs and their mechanisms of functions might help to further discovery of breast cancer biological characteristics. In this review, we discuss physiological functions, epigenetic regulation, transcriptional regulation of lncRNAs, and their important role in tumor progression and metastasis. Some lncRNAs function as oncogenes and some function as tumor suppressors. Interestingly, recent reports depict that hypomethylation of promoters of lncRNAs play a pivotal role in cancer progression, suggesting the importance of epigenetic regulation. Furthermore, we discuss the role of lncRNAs in exosomes and their function in drug resistance, and therapeutic importance of exosomal lncRNAs in cancer biology. In summary, lncRNAs have a great potential to consider them as novel prognostic biomarkers as well as new therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA
| | - Maryam Maheronnaghsh
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
42
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|