1
|
Kazemi F, Sadeghian F, Pirsadeghi A, Asadi F, Javdani H, Yousefi-Ahmadipour A. Adipose mesenchymal stem cell conditioned medium and extract: A promising therapeutic option for regenerative breast cancer therapy. SAGE Open Med 2024; 12:20503121241306606. [PMID: 39691866 PMCID: PMC11650577 DOI: 10.1177/20503121241306606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Breast cancer is the second most common cancer and a leading cause of cancer death in U.S. women. The tumor microenvironment, especially nearby adipocytes, plays a crucial role in its progression. Therefore, this study aimed to investigate the effects of human adipose mesenchymal stem cells-derived conditioned medium (SUP) and extract (CE) from on breast cancer cells. Methods Human adipose-derived mesenchymal stem cells were isolated and characterized by flow cytometry using Cluster of Differentiation (CD) markers (CD34, CD45, CD90, and CD105). The differentiation potential was confirmed via adipogenic and osteogenic induction. MCF-7 and MDA-MB-231 cells were treated with SUP and CE, and cell viability was assessed using the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay at 24, 48, and 72 h. Doubling time, colony formation, wound healing, and gene expression for key cancer-related genes (TIMP1, TIMP2, MMP2, PDL1, IDO, Bax, caspase 3, and caspase 9) were also evaluated. Results Both SUP and CE significantly inhibited the viability of MCF-7 and MDA-MB-231 cells, reduced their doubling time, and suppressed colony formation. In wound healing assays, cell migration was notably impaired in MDA-MB-231 cells but less so in MCF-7 cells. Real-time polymerase chain reaction revealed downregulation of TIMP1, MMP2, PDL1, and IDO in MDA-MB-231 cells after treatment, while CE increased certain gene expressions in MCF-7 cells. Bax, caspase 3, and caspase 9 expressions were significantly upregulated in MDA-MB-231 cells but not in MCF-7 cells after treatment. Conclusion Human adipose-derived mesenchymal stem cells-derived SUP and CE exhibit antitumor effects on breast cancer cells, suggesting a potential therapeutic strategy to suppress tumor progression. Mesenchymal stem cells-SUP and CE could be a safe and novel regenerative approach for breast reconstruction postmastectomy without tumor recurrence risk.
Collapse
Affiliation(s)
- Faezeh Kazemi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Sadeghian
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javdani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
4
|
Wang J, Donohoe E, Canning A, Moosavizadeh S, Buckley F, Brennan MÁ, Ryan AE, Ritter T. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies. Int Immunopharmacol 2023; 125:111096. [PMID: 37871378 DOI: 10.1016/j.intimp.2023.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS IFN-γ and IFN-γ/TGF-β1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-β1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1β expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION ABs derived from IFN-γ/TGF-β1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Fiona Buckley
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
Zhang Q, Wang J, Zhang J, Liu F. Potential functions and therapeutic implications of glioma-resident mesenchymal stem cells. Cell Biol Toxicol 2023; 39:853-866. [PMID: 37138122 DOI: 10.1007/s10565-023-09808-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are emerging crucial regulators in the tumor microenvironment (TME), which contributes to tumor progression and therapeutic resistance. MSCs are considered to be the stromal components of several tumors, their ultimate contribution to tumorigenesis and their potential to drive tumor stem cells, especially in the unique microenvironment of gliomas. Glioma-resident MSCs (GR-MSCs) are non-tumorigenic stromal cells. The phenotype of GR-MSCs is similar to that of prototype bone marrow-MSCs and GR-MSCs enhance the GSCs tumorigenicity via the IL-6/gp130/STAT3 pathway. The higher percentage of GR-MSCs in TME results in the poor prognosis of glioma patients and illuminate the tumor-promoting roles for GR-MSCs by secreting specific miRNA. Furthermore, the GR-MSC subpopulations associated with CD90 expression determine their different functions in glioma progression and CD90low MSCs generate therapeutic resistance by increasing IL-6-mediated FOXS1 expression. Therefore, it is urgent to develop novel therapeutic strategies targeting GR-MSCs for GBM patients. Despite that several functions of GR-MSCs have been confirmed, their immunologic landscapes and deeper mechanisms associated with the functions are not still expounded. In this review, we summarize the progress and potential function of GR-MSCs, as well as highlight their therapeutic implications based on GR-MSCs in GBM patients.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
6
|
Vergoten G, Bailly C. N-glycosylation reinforces interaction of immune checkpoint TIM-3 with a small molecule ligand. Comput Biol Chem 2023; 104:107852. [PMID: 36965447 DOI: 10.1016/j.compbiolchem.2023.107852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
N-glycosylation of eukaryotic proteins plays roles in protein folding, trafficking, and signal transduction. The biological influence of the process is well understood, whereas the pharmacological impact of protein N-glycosylation is not well under discerned. The role of N-glycosylation on drug binding to protein has been rarely studied. We have modeled the influence of a bi-antennary N-glycan introduced at position N78 on the immune checkpoint TIM-3 (T cell immunoglobulin domain and mucin domain-containing molecule 3) on the interaction with a selective drug antagonist. The bulky N-glycan introduced at the consensus sequence Asn-Val-Thr has no influence on drug binding when the glycan adopts an extended conformation. But in a folded conformation, the glycan can interact directly with the triazoloquinazolinone derivative so as to further stabilize the drug-TIM-3 complex. The non-fucosylated glycan at position N78 markedly consolidates the drug interaction, via an additional H-bond interaction with the α3-mannose residue. It provides a gain of empirical potential energy of interaction (ΔE) of about 30 %. The presence of a more rigid fucosylated N-glycan is a little less favorable, with a gain of ΔE of about 20 %. The folded N-glycan appears to protect the ligand bound to the protein cavity, with the tricyclic core of the heterocyclic molecule sandwiched between two indole rings of tryptophan residues. Similar results were obtained when using a biantennary disialyl N-glycan with a bisecting GlcNAc residue and a tetra-antennary N-glycan. The molecular models illustrate the drug-stabilizing capacity of a bulky N-glycan positioned at a validated glycosylation site (N78 corresponding to N100 for the full-length protein). The modeling approach is useful to delineate further the role of the N-glycan of the immune checkpoint TIM-3 in interaction with small molecule ligands, and to guide the design of more potent compounds. The approach is transposable to other proteins to better comprehend the influence of N-glycans on drug-receptor interactions.
Collapse
Affiliation(s)
- Gérard Vergoten
- University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, F-59006 Lille, France
| | - Christian Bailly
- University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; OncoWitan, Lille (Wasquehal), 59290, France.
| |
Collapse
|
7
|
Luo G, Wosinski P, Salazar-Noratto GE, Bensidhoum M, Bizios R, Marashi SA, Potier E, Sheng P, Petite H. Glucose Metabolism: Optimizing Regenerative Functionalities of Mesenchymal Stromal Cells Postimplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:47-61. [PMID: 35754335 DOI: 10.1089/ten.teb.2022.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Guotian Luo
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Pauline Wosinski
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Giuliana E Salazar-Noratto
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
8
|
Fu Y, Qian H, Zhou X, Wu Y, Song L, Chen K, Bai D, Yang Y, Li J, Xie G. Proximity ligation assay mediated rolling circle amplification strategy for in situ amplified imaging of glycosylated PD-L1. Anal Bioanal Chem 2021; 413:6929-6939. [PMID: 34523014 DOI: 10.1007/s00216-021-03659-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Glycosylated PD-L1 is a more reliable biomarker for immune checkpoint therapy and plays important roles in tumor immunity. Glycosylation of PD-L1 hinders antibody-based detection, which is partially responsible for the inconsistency between PD-L1 immunohistochemical results and therapeutic treatment response. Herein, we present a proximity ligation assay mediated rolling circle amplification (PLA-RCA) strategy for amplified imaging of glycosylated PD-L1 in situ. The strategy relies on a pair of DNA probes: an aptamer probe to specifically recognize cellular surface protein PD-L1 and a glycan conversion (GC) probe for metabolic glycan labeling. Upon proximity ligation of sequence binding to the two probes, the proximity ligation-triggered RCA occurs. The feasibility of the as-proposed strategy has been validated as it realized the visualization of PD-L1 glycosylation in different cancer cells and the monitoring of the variation of PD-L1 glycosylation during drug treatment. Thus, we envision the present work offers a useful alternative to track protein-specific glycosylation and potentially advances the investigation of the dynamic glycan state associated with the disease process.
Collapse
Affiliation(s)
- Yixin Fu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China.,Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Husun Qian
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Xi Zhou
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - You Wu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Lin Song
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Kena Chen
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Dan Bai
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China.
| |
Collapse
|
9
|
Bailly C, Vergoten G. N-glycosylation and ubiquitinylation of PD-L1 do not restrict interaction with BMS-202: A molecular modeling study. Comput Biol Chem 2020; 88:107362. [PMID: 32871472 DOI: 10.1016/j.compbiolchem.2020.107362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The Programmed cell Death protein-1/Ligand 1 (PD-1/L1) checkpoint is a major target in oncology. Monoclonal antibodies targeting PD-1 or PD-L1 are used to treat different types of solid tumors and lymphoma. PD-L1-binding small molecules are also actively searched. The lead compound is the biphenyl drug BMS-202 which stabilizes PD-L1 protein dimers and displays a potent antitumor activity in experimental models. Here we have investigated the effect of N-glycosylation (at N35, N192, N200 and N219) and mono-ubiquitination (at K178) of PD-L1 on the interaction with BMS-202 by molecular modeling. Two complementary tridimensional models of PD-L1, based on available crystallographic structures, were constructed with BMS-202 bound. The structures were glycosylated, with a fucosylated bi-antennary N-glycan and ubiquitinated. Model 1 refers to glycoPD-L1 bearing 16 N-glycans, with or without 4 ubiquitin residues. Model 2 presents 8 N-glycans and 2 ubiquitin residues. In both cases, BMS-202 was bound to the protein interface, stabilizing a PD-L1 dimer. The incorporation of the N-glycans or the ubiquitins did not significantly alter the drug-protein recognition. The interface of the drug-stabilized protein dimer is unaffected by the glycosylation or ubiquitination. Calculations of the binding energies indicated that the glycosylation slightly reduces the stability of the drug-protein complexes but does not prevent the drug binding process. Our modeling study suggests that the drug can target efficiently the different forms of PD-L1 in cells, glycosylated, ubiquitinated or not. These models of N-glycosylated and ubiquitinated PD-L1 will be useful to study other PD-L1 protein complexes.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
| |
Collapse
|