1
|
Davila-Valencia I, Saad M, Olthoff G, Faulkner M, Charara M, Farnum A, Dysko RC, Zhang Z. Sex specific effects of buprenorphine on adult hippocampal neurogenesis and behavioral outcomes during the acute phase after pediatric traumatic brain injury in mice. Neuropharmacology 2024; 245:109829. [PMID: 38159797 DOI: 10.1016/j.neuropharm.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Traumatic brain injury (TBI) in children often causes cognitive and mental dysfunctions, as well as acute and chronic pain. Adult hippocampal neurogenesis plays a key role in cognition, depression, and pain. Adult hippocampal neurogenesis can be modulated by genetic and environmental factors, such as TBI and opioids. Buprenorphine (BPN), a semisynthetic opioid, is commonly used for pain management in children, however, the effects of BPN on adult hippocampal neurogenesis after pediatric TBI are still unclear. This study investigated the sex-specific effects of BPN on adult hippocampal neurogenesis during acute phase after pediatric TBI. Male and female littermates were randomized on postnatal day 20-21(P20-21) into Sham, TBI+saline and TBI+BPN groups. BPN was administered intraperitoneally to the TBI+BPN mice at 30 min after injury, and then every 6-12 h (h) for 2 days (d). Bromodeoxyuridine (BrdU) was administered intraperitoneally to all groups at 2, 4, 6, and 8-h post-injury. All outcomes were evaluated at 3-d post-BrdU administration. We found that TBI induced significant cognitive impairment, depression, and reduced adult hippocampal neurogenesis in both male and female mice, with more prominent effects in females. BPN significantly improved adult hippocampal neurogenesis and depression in males, but not in females. We further demonstrated that differential expressions of opioid receptors, transcription factors and neuroinflammatory markers at the neurogenic niche might be responsible for the differential effects of BPN in males and females. In conclusion, this study elucidates the effects of BPN on adult hippocampal neurogenesis and behavioral outcomes at the acute phase after pediatric TBI.
Collapse
Affiliation(s)
- Ivan Davila-Valencia
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Mark Saad
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Grace Olthoff
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Megan Faulkner
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Maysoun Charara
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Abigail Farnum
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Robert C Dysko
- Unit for Laboratory Animal Medicine, University of Michigan-Ann Arbor, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| |
Collapse
|
2
|
Xu C, Ye J, Sun Y, Sun X, Liu JG. The Antidepressant Effect of Magnolol on Depression-Like Behavior of CORT-Treated Mice. J Mol Neurosci 2024; 74:3. [PMID: 38183534 DOI: 10.1007/s12031-023-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Although the antidepressant-like effect of magnolol has been revealed in previous reports, the mechanism remains unclear. In this study, the antidepressant-like effect of magnolol on corticosterone-induced (CORT-induced) mice was investigated in vivo. After 21 days of CORT induction, the mice showed marked depressive-like behaviors, with a decrease in sucrose preference score and an increase in immobility time in the tail suspension test (TST) and forced swimming test (FST). Pretreatment with either magnolol (50 mg/kg, i.p.) or the kappa opioid receptor (KOR) antagonist nor-BNI (10 mg/kg, i.p.) prevented CORT-induced depression-like behavior and reduced CORT-induced dynorphin (DYN A) elevation in the hippocampal ventral DG. However, no depression-like behavior was observed in mice with KOR downregulation in the ventral DG. We further found that upregulation of DYN A in the DG caused depression-like behavior, which was blocked by intraperitoneal injection of nor-BNI and modulated by magnolol. The present study demonstrated that magnolol could ameliorate CORT-induced depression-like behaviors, by modulating the DYN A/KOR system in the ventral DG of the hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No.548 Binwen Road Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China.
| | - Jiayu Ye
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Yanting Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Xiujian Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No.548 Binwen Road Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China.
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Road Pudong District, Shanghai, 200120, China.
| |
Collapse
|
3
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Singh N, Siebzehnrubl FA, Martinez-Garay I. Transcriptional control of embryonic and adult neural progenitor activity. Front Neurosci 2023; 17:1217596. [PMID: 37588515 PMCID: PMC10426504 DOI: 10.3389/fnins.2023.1217596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Neural precursors generate neurons in the embryonic brain and in restricted niches of the adult brain in a process called neurogenesis. The precise control of cell proliferation and differentiation in time and space required for neurogenesis depends on sophisticated orchestration of gene transcription in neural precursor cells. Much progress has been made in understanding the transcriptional regulation of neurogenesis, which relies on dose- and context-dependent expression of specific transcription factors that regulate the maintenance and proliferation of neural progenitors, followed by their differentiation into lineage-specified cells. Here, we review some of the most widely studied neurogenic transcription factors in the embryonic cortex and neurogenic niches in the adult brain. We compare functions of these transcription factors in embryonic and adult neurogenesis, highlighting biochemical, developmental, and cell biological properties. Our goal is to present an overview of transcriptional regulation underlying neurogenesis in the developing cerebral cortex and in the adult brain.
Collapse
Affiliation(s)
- Niharika Singh
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Florian A. Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Yasmin N, Collier AD, Karatayev O, Abdulai AR, Yu B, Fam M, Khalizova N, Leibowitz SF. Subpopulations of hypocretin/orexin neurons differ in measures of their cell proliferation, dynorphin co-expression, projections, and response to embryonic ethanol exposure. Sci Rep 2023; 13:8448. [PMID: 37231149 PMCID: PMC10213024 DOI: 10.1038/s41598-023-35432-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous studies in animals demonstrate that embryonic exposure to ethanol (EtOH) at low-moderate doses stimulates neurogenesis and increases the number of hypothalamic neurons expressing the peptide, hypocretin/orexin (Hcrt). A recent study in zebrafish showed that this effect on the Hcrt neurons in the anterior hypothalamus (AH) is area specific, evident in the anterior (aAH) but not posterior (pAH) part of this region. To understand specific factors that may determine the differential sensitivity to EtOH of these Hcrt subpopulations, we performed additional measures in zebrafish of their cell proliferation, co-expression of the opioid dynorphin (Dyn), and neuronal projections. In association with the increase in Hcrt neurons in the aAH but not pAH, EtOH significantly increased only in the aAH the proliferation of Hcrt neurons and their number lacking Dyn co-expression. The projections of these subpopulations differed markedly in their directionality, with those from the pAH primarily descending to the locus coeruleus and those from the aAH ascending to the subpallium, and they were both stimulated by EtOH, which induced specifically the most anterior subpallium-projecting Hcrt neurons to become ectopically expressed beyond the aAH. These differences between the Hcrt subpopulations suggest they are functionally distinct in their regulation of behavior.
Collapse
Affiliation(s)
- Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Mazzeo F, Meccariello R, Guatteo E. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport. Int J Mol Sci 2023; 24:ijms24097831. [PMID: 37175536 PMCID: PMC10178540 DOI: 10.3390/ijms24097831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", 80133 Naples, Italy
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
8
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
9
|
Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:ijms23073819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids’ ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
|