1
|
Blackburn DM, Sahinyan K, Hernández-Corchado A, Lazure F, Richard V, Raco L, Perron G, Zahedi RP, Borchers CH, Lepper C, Kawabe H, Jahani-Asl A, Najafabadi HS, Soleimani VD. The E3 ubiquitin ligase Nedd4L preserves skeletal muscle stem cell quiescence by inhibiting their activation. iScience 2024; 27:110241. [PMID: 39015146 PMCID: PMC11250905 DOI: 10.1016/j.isci.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.
Collapse
Affiliation(s)
- Darren M. Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Laura Raco
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine 37075 Göttingen, Germany
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Vahab D. Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Liu Y, Ilinski A, Gerstenfeld LC, Bragdon B. Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation. Front Physiol 2023; 14:1106474. [PMID: 36793419 PMCID: PMC9922707 DOI: 10.3389/fphys.2023.1106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The expression of Prx1 has been used as a marker to define the skeletal stem cells (SSCs) populations found within the bone marrow and periosteum that contribute to bone regeneration. However, Prx1 expressing SSCs (Prx1-SSCs) are not restricted to the bone compartments, but are also located within the muscle and able to contribute to ectopic bone formation. Little is known however, about the mechanism(s) regulating Prx1-SSCs that reside in muscle and how they participate in bone regeneration. This study compared both the intrinsic and extrinsic factors of the periosteum and muscle derived Prx1-SSCs and analyzed their regulatory mechanisms of activation, proliferation, and skeletal differentiation. There was considerable transcriptomic heterogeneity in the Prx1-SSCs found in muscle or the periosteum however in vitro cells from both tissues showed tri-lineage (adipose, cartilage and bone) differentiation. At homeostasis, periosteal-derived Prx1 cells were proliferative and low levels of BMP2 were able to promote their differentiation, while the muscle-derived Prx1 cells were quiescent and refractory to comparable levels of BMP2 that promoted periosteal cell differentiation. The transplantation of Prx1-SCC from muscle and periosteum into either the same site from which they were isolated, or their reciprocal sites showed that periosteal cell transplanted onto the surface of bone tissues differentiated into bone and cartilage cells but was incapable of similar differentiation when transplanted into muscle. Prx1-SSCs from the muscle showed no ability to differentiate at either site of transplantation. Both fracture and ten times the BMP2 dose was needed to promote muscle-derived cells to rapidly enter the cell cycle as well as undergo skeletal cell differentiation. This study elucidates the diversity of the Prx1-SSC population showing that cells within different tissue sites are intrinsically different. While muscle tissue must have factors that promote Prx1-SSC to remain quiescent, either bone injury or high levels of BMP2 can activate these cells to both proliferate and undergo skeletal cell differentiation. Finally, these studies raise the possibility that muscle SSCs are potential target for skeletal repair and bone diseases.
Collapse
Affiliation(s)
| | | | | | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Abe K, Schauer T, Torres-Padilla ME. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep 2022; 41:111865. [PMID: 36577375 DOI: 10.1016/j.celrep.2022.111865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022] Open
Abstract
How transcription is regulated as development commences is fundamental to understand how the transcriptionally silent mature gametes are reprogrammed. The embryonic genome is activated for the first time during zygotic genome activation (ZGA). How RNA polymerase II (Pol II) and productive elongation are regulated during this process remains elusive. Here, we generate genome-wide maps of Serine 5 and Serine 2-phosphorylated Pol II during and after ZGA in mouse embryos. We find that both phosphorylated Pol II forms display similar distributions across genes during ZGA, with typical elongation enrichment of Pol II emerging after ZGA. Serine 2-phosphorylated Pol II occurs at genes prior to their activation, suggesting that Serine 2 phosphorylation may prime gene expression. Functional perturbations demonstrate that CDK9 and SPT5 are major ZGA regulators and that SPT5 prevents precocious activation of some genes. Overall, our work sheds molecular insights into transcriptional regulation at the beginning of mammalian development.
Collapse
Affiliation(s)
- Kenichiro Abe
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
5
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
6
|
Freter R, Falletta P, Omrani O, Rasa M, Herbert K, Annunziata F, Minetti A, Krepelova A, Adam L, Käppel S, Rüdiger T, Wang ZQ, Goding CR, Neri F. Establishment of a fluorescent reporter of RNA-polymerase II activity to identify dormant cells. Nat Commun 2021; 12:3318. [PMID: 34083536 PMCID: PMC8175728 DOI: 10.1038/s41467-021-23580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
Dormancy, a reversible quiescent cellular state characterized by greatly reduced metabolic activity, protects from genetic damage, prolongs survival and is crucial for tissue homeostasis and cellular response to injury or transplantation. Dormant cells have been characterized in many tissues, but their identification, isolation and characterization irrespective of tissue of origin remains elusive. Here, we develop a live cell ratiometric fluorescent Optical Stem Cell Activity Reporter (OSCAR) based on the observation that phosphorylation of RNA Polymerase II (RNApII), a hallmark of active mRNA transcription elongation, is largely absent in dormant stem cells from multiple lineages. Using the small intestinal crypt as a model, OSCAR reveals in real time the dynamics of dormancy induction and cellular differentiation in vitro, and allows the identification and isolation of several populations of transcriptionally diverse OSCARhigh and OSCARlow intestinal epithelial cell states in vivo. In particular, this reporter is able to identify a dormant OSCARhigh cell population in the small intestine. OSCAR therefore provides a tool for a better understanding of dormant stem cell biology. The identification and characterisation of dormant cells is currently difficult. Here the authors report Optical Stem Cell Activity Reporter (OSCAR) to assess RNA polymerase II activity and identify dormant cell populations in intestinal epithelial cells in vivo.
Collapse
Affiliation(s)
- Rasmus Freter
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.,Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Omid Omrani
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Mahdi Rasa
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Katharine Herbert
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesco Annunziata
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Alberto Minetti
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Anna Krepelova
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Lisa Adam
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Sandra Käppel
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Tina Rüdiger
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany
| | - Zhao-Qi Wang
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 007743, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Francesco Neri
- Leibniz-Institute on Ageing, Fritz-Lipmann-Institute (FLI), Jena, 07745, Germany.
| |
Collapse
|
7
|
Gupta R, Turati V, Brian D, Thrussel C, Wilbourn B, May G, Enver T. Nov/CCN3 Enhances Cord Blood Engraftment by Rapidly Recruiting Latent Human Stem Cell Activity. Cell Stem Cell 2020; 26:527-541.e8. [PMID: 32197066 PMCID: PMC7118368 DOI: 10.1016/j.stem.2020.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 01/13/2023]
Abstract
Umbilical cord blood (UCB) has had considerable impact in pediatric stem cell transplantation, but its wider use is limited in part by unit size. Long-term ex vivo culture offers one approach to increase engraftment capacity by seeking to expand stem and progenitor cells. Here, we show brief incubation (8 h) of UCB CD34+ cells with the matricellular regulator Nov (CCN3) increases the frequency of serially transplantable hematopoietic stem cells (HSCs) 6-fold. This rapid response suggests recruitment rather than expansion of stem cells; accordingly, in single-cell assays, Nov increases the clonogenicity of phenotypic HSCs without increasing their number through cell division. Recruitment is associated with both metabolic and transcriptional changes, and tracing of cell divisions demonstrates that the increased clonogenic activity resides within the undivided fraction of cells. Harnessing latent stem cell potential through recruitment-based approaches will inform understanding of stem cell state transitions with implications for translation to the clinic. NOV rapidly increases the number of functional HSCs in a single cord blood unit This is by direct recruitment without expansion or self-renewal ex vivo NOV reduces C-MYC and ROS but increases glycolytic enzymes in HSCs Manipulating non-dividing stem cells can alter their state and functional potential
Collapse
Affiliation(s)
- Rajeev Gupta
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK; Manual Blood Sciences, Health Services Laboratories, The Halo Building, 1 Mabledon Place, London WC1H 9AX, UK
| | - Virginia Turati
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Duncan Brian
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Craig Thrussel
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Barry Wilbourn
- Flow Cytometry Core Facility, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Gillian May
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Wang X, Bei H, Du R, Chen Q, Wu F, Chen J, Bo H. Metabolomic analysis of serum reveals the potential effective ingredients and pathways of Danggui Buxue Tang in promoting erythropoiesis. Complement Ther Med 2020; 48:102247. [DOI: 10.1016/j.ctim.2019.102247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
|
9
|
Li X, Xu JX, Jia XS, Li WY, Han YC, Wang EH, Li F. Dormancy activation mechanism of tracheal stem cells. Oncotarget 2018; 7:23730-9. [PMID: 27009861 PMCID: PMC5029659 DOI: 10.18632/oncotarget.8179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/02/2016] [Indexed: 01/23/2023] Open
Abstract
Accurate markers and molecular mechanisms of stem cell dormancy and activation are poorly understood. In this study, the anti-cancer drug, 5-fluorouracil, was used to selectively kill proliferating cells of human bronchial epithelial (HBE) cell line. This method can enrich and purify stem cell population. The dormant versus active status of stem cells was determined by phosphorylation of RNAp II Ser2. The surviving stem cells were cultured to form stem cell spheres expressing stem cell markers and transplanted into nude mice to form a teratoma. The results demonstrated the properties of stem cells and potential for multi-directional differentiation. Bisulfite sequencing polymerase chain reaction showed that demethylation of the Sox2 promoter by 5-FU resulted in Sox2 expression in the dormant stem cells. This study shows that the dormancy and activation of HBE stem cells is closely related to epigenetic modification.
Collapse
Affiliation(s)
- Xin Li
- Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing-Xian Xu
- Department of Ophthalmology, The 4th Affiliated Hospital, Eye Institute, China Medical University, The Key Laboratory of Lens Research, Shenyang, China
| | - Xin-Shan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen-Ya Li
- Department of Thoracic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yi-Chen Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fang Li
- IVF Michigan, Bloomfield Hills, MI, USA
| |
Collapse
|
10
|
Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis. Methods Mol Biol 2018; 1686:215-239. [PMID: 29030824 DOI: 10.1007/978-1-4939-7371-2_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative potential in adult stem cells is closely associated with the establishment of-and exit from-a temporary state of quiescence. Emerging evidence not only provides a rationale for the link between lineage determination programs and cell cycle regulation but also highlights the understanding of quiescence as an actively maintained cellular program, encompassing networks and mechanisms beyond mitotic inactivity or metabolic restriction. Interrogating the quiescent genome and transcriptome using deep-sequencing technologies offers an unprecedented view of the global mechanisms governing this reversibly arrested cellular state and its importance for cell identity. While many efforts have identified and isolated pure target stem cell populations from a variety of adult tissues, there is a growing appreciation that their isolation from the stem cell niche in vivo leads to activation and loss of hallmarks of quiescence. Thus, in vitro models that recapitulate the dynamic reversibly arrested stem cell state in culture and lend themselves to comparison with the activated or differentiated state are useful templates for genome-wide analysis of the quiescence network.In this chapter, we describe the methods that can be adopted for whole genome epigenomic and transcriptomic analysis of cells derived from one such established culture model where mouse myoblasts are triggered to enter or exit quiescence as homogeneous populations. The ability to synchronize myoblasts in G0 permits insights into the genome in "deep quiescence." The culture methods for generating large populations of quiescent myoblasts in either 2D or 3D culture formats are described in detail in a previous chapter in this series (Arora et al. Methods Mol Biol 1556:283-302, 2017). Among the attractive features of this model are that genes isolated from quiescent myoblasts in culture mark satellite cells in vivo (Sachidanandan et al., J Cell Sci 115:2701-2712, 2002) providing a validation of its approximation of the molecular state of true stem cells. Here, we provide our working protocols for ChIP-seq and RNA-seq analysis, focusing on those experimental elements that require standardization for optimal analysis of chromatin and RNA from quiescent myoblasts, and permitting useful and revealing comparisons with proliferating myoblasts or differentiated myotubes.
Collapse
|
11
|
Laurette P, Koludrovic D, Coassolo S, Davidson I. [Epigenetic regulation of gene expression in malignant melanoma]. Biol Aujourdhui 2017; 210:283-295. [PMID: 28327285 DOI: 10.1051/jbio/2016028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Malignant melanoma is a highly aggressive cancer with a propensity for early metastasis. Melanocyte transformation results predominantly from oncogenic mutations in BRAF, NRAS or NF1 leading to constitutive activation of the MAP kinase pathway driving cell proliferation and second site mutations such as loss of CDKN1A, or PTEN or activating mutations in the beta-catenin pathway that allow escape from oncogene induced senescence. Nevertheless, irrespective of the nature of the driver mutations, melanoma cell physiology is strongly regulated by transcription factors and epigenetic mechanisms. MITF (Microphthalmia-associated Transcription Factor) and SOX10 are two major transcription factors that regulate both normal melanocyte and melanoma cell physiology. Using a combination of mouse genetics, biochemistry and high throughput genomics we have identified cofactors for MITF and addressed the mechanisms by which MITF, SOX10 and their cofactors regulate gene expression in melanocytes and melanoma.
Collapse
|
12
|
Young CP, Hillyer C, Hokamp K, Fitzpatrick DJ, Konstantinov NK, Welty JS, Ness SA, Werner-Washburne M, Fleming AB, Osley MA. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics 2017; 18:107. [PMID: 28122508 PMCID: PMC5267397 DOI: 10.1186/s12864-017-3509-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Background Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Results Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. Conclusions The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3509-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Conor P Young
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Cory Hillyer
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Darren J Fitzpatrick
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Scott A Ness
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| | - Mary Ann Osley
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
13
|
Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes. Stem Cells Int 2016; 2016:1461648. [PMID: 27247575 PMCID: PMC4876257 DOI: 10.1155/2016/1461648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs) transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs) from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs) were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure) and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers) after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult's BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult's BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion.
Collapse
|
14
|
Ishii A, Kimura T, Sadahiro H, Kawano H, Takubo K, Suzuki M, Ikeda E. Histological Characterization of the Tumorigenic "Peri-Necrotic Niche" Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma. PLoS One 2016; 11:e0147366. [PMID: 26799577 PMCID: PMC4723051 DOI: 10.1371/journal.pone.0147366] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Characterization of the niches for stem-like tumor cells is important to understand and control the behavior of glioblastomas. Cell-cycle quiescence might be a common mechanism underlying the long-term maintenance of stem-cell function in normal and neoplastic stem cells, and our previous study demonstrated that quiescence induced by hypoxia-inducible factor (HIF)-1α is associated with a high long-term repopulation capacity of hematopoietic stem cells. Based on this, we examined human astrocytoma tissues for HIF-1α-regulated quiescent stem-like tumor cells as a candidate for long-term tumorigenic cells and characterized their niche histologically. METHODS Multi-color immunohistochemistry was used to visualize HIF-1α-expressing (HIF-1α+) quiescent stem-like tumor cells and their niche in astrocytoma (WHO grade II-IV) tissues. This niche was modeled using spheroids of cultured glioblastoma cells and its contribution to tumorigenicity was evaluated by sphere formation assay. RESULTS A small subpopulation of HIF-1α+ quiescent stem-like tumor cells was found in glioblastomas but not in lower-grade astrocytomas. These cells were concentrated in the zone between large ischemic necroses and blood vessels and were closer to the necrotic tissues than to the blood vessels, which suggested that a moderately hypoxic microenvironment is their niche. We successfully modeled this niche containing cells of HIF-1α+ quiescent stem-like phenotype by incubating glioblastoma cell spheroids under an appropriately hypoxic condition, and the emergence of HIF-1α+ quiescent stem-like cells was shown to be associated with an enhanced sphere-forming activity. CONCLUSIONS These data suggest that the "peri-necrotic niche" harboring HIF-1α+ quiescent stem-like cells confers a higher tumorigenic potential on glioblastoma cells and therefore may be a therapeutic target to control the behavior of glioblastomas.
Collapse
Affiliation(s)
- Aya Ishii
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tokuhiro Kimura
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail: (TK); (EI)
| | - Hirokazu Sadahiro
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroo Kawano
- Department of Basic Laboratory Sciences, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Keiyo Takubo
- Research Institute National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail: (TK); (EI)
| |
Collapse
|
15
|
Koludrovic D, Laurette P, Strub T, Keime C, Le Coz M, Coassolo S, Mengus G, Larue L, Davidson I. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells. PLoS Genet 2015; 11:e1005555. [PMID: 26440048 PMCID: PMC4595011 DOI: 10.1371/journal.pgen.1005555] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022] Open
Abstract
MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. The melanocytes pigmenting the coat of adult mice derive from the melanocyte stem cell population residing in the permanent bulge area of the hair follicle. At each angen phase, melanocyte stem cells are stimulated to generate proliferative transient amplifying cells that migrate to the bulb of the follicle where they differentiate into mature melanin producing melanocytes, a processes involving MIcrophthalmia-associated Transcription Factor (MITF) the master regulator of the melanocyte lineage. We show that MITF associates with the NURF chromatin-remodelling factor in melanoma cells. NURF acts downstream of MITF in melanocytes and melanoma cells co-regulating gene expression in vitro. In vivo, mice lacking the NURF subunit Bptf in the melanocyte lineage show premature greying as they are unable to generate mature melanocytes from the adult stem cell population. We find that the melanocyte stem cells from these animals are abnormal and that once they are stimulated at anagen, Bptf is required to ensure the expression of melanocyte markers and their differentiation into mature adult melanocytes. Chromatin remodelling by NURF therefore appears to be essential for the transition of the transcriptionally quiescent stem cell to the differentiated state.
Collapse
Affiliation(s)
- Dana Koludrovic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Beaston Institute for Cancer Research, Glasgow, United Kingdom
| | - Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Thomas Strub
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Madeleine Le Coz
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
| | - Sebastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Lionel Larue
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
- * E-mail:
| |
Collapse
|
16
|
Yamaguchi M, Watanabe Y, Ohtani T, Uezumi A, Mikami N, Nakamura M, Sato T, Ikawa M, Hoshino M, Tsuchida K, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S, Yamamoto H, Fukada SI. Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Rep 2015; 13:302-14. [PMID: 26440893 DOI: 10.1016/j.celrep.2015.08.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/09/2015] [Accepted: 08/31/2015] [Indexed: 01/26/2023] Open
Abstract
Calcitonin receptor (Calcr) is expressed in adult muscle stem cells (muscle satellite cells [MuSCs]). To elucidate the role of Calcr, we conditionally depleted Calcr from adult MuSCs and found that impaired regeneration after muscle injury correlated with the decreased number of MuSCs in Calcr-conditional knockout (cKO) mice. Calcr signaling maintained MuSC dormancy via the cAMP-PKA pathway but had no impact on myogenic differentiation of MuSCs in an undifferentiated state. The abnormal quiescent state in Calcr-cKO mice resulted in a reduction of the MuSC pool by apoptosis. Furthermore, MuSCs were found outside their niche in Calcr-cKO mice, demonstrating cell relocation. This emergence from the sublaminar niche was prevented by the Calcr-cAMP-PKA and Calcr-cAMP-Epac pathways downstream of Calcr. Altogether, the findings demonstrated that Calcr exerts its effect specifically by keeping MuSCs in a quiescent state and in their location, maintaining the MuSC pool.
Collapse
Affiliation(s)
- Masahiko Yamaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoko Watanabe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuji Ohtani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Norihisa Mikami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Yamamoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Abstract
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. Summary: This Review discusses melanocyte development and differentiation, melanocyte stem cells, and the role of the melanocyte lineage in diseases such as melanoma.
Collapse
Affiliation(s)
| | - Ian J Jackson
- MRC Human Genetics Unit and University of Edinburgh Cancer Research UK Cancer Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
18
|
Hodgetts SI, Stagg K, Sturm M, Edel M, Blancafort P. Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies. Int J Biochem Cell Biol 2014; 56:74-81. [PMID: 25300917 DOI: 10.1016/j.biocel.2014.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
Abstract
The "stem cell" has become arguably one of the most important biological tools in the arsenal of translational research directed at regeneration and repair. It remains to be seen whether every tissue has its own stem cell niche, although relatively recently a large amount of research has focused on isolating and characterizing tissue-specific stem cell populations, as well as those that are able to be directed to transdifferentiate into a variety of different lineages. Traditionally, stem cells are isolated from the viable tissue of embryonic, fetal, or adult living hosts; from "fresh" donated tissues that have been surgically or otherwise removed (biopsies), or obtained directly from tissues within minutes to several hours post mortem (PM). These human progenitor/stem cell sources remain potentially highly controversial, since they are accompanied by various still-unresolved ethical, social, moral and legal challenges. Due to the limited number of "live" donors, the small amount of material obtained from biopsies and difficulties during purification processes, harvesting from cadaveric material presents itself as an alternative strategy that could provide a hitherto untapped source of stem cells. However, PM stem cells are not without their own unique set of limitations including difficulty of obtaining samples, limited supply of material, variations in delay between death and sample collection, possible lack of medication history and suboptimal retrospective assignment of diagnostic and demographic data. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Anatomy Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Kelda Stagg
- School of Anatomy Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marian Sturm
- Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Michael Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain; University of Sydney Medical School, Faculty of Medicine, Westmead Children's Hospital, Division of Pediatrics and Child Health, Sydney, Australia
| | - Pilar Blancafort
- School of Anatomy Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; Cancer Epigenetics Group, The Harry Perkins Institute for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
19
|
Abstract
INTRODUCTION Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSCs) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation and proliferation of MelSCs are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSCs and their niche may lead to use of MelSCs in new treatments for various pigmentation disorders. AREAS COVERED We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration and proliferation of melanocytes and factors involved in the survival, maintenance and regeneration of MelSCs are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. EXPERT OPINION MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSCs would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSCs, it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying.
Collapse
Affiliation(s)
- Ju Hee Lee
- Massachusetts General Hospital, Harvard Medical School, Department of Dermatology and Cutaneous Biology Research Center , Boston, MA 02129 , USA +1 617 643 5428 ; +1 617 643 6588 ;
| | | |
Collapse
|
20
|
Fukada SI, Ma Y, Uezumi A. Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol 2014; 2:10. [PMID: 25364718 PMCID: PMC4207038 DOI: 10.3389/fcell.2014.00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/12/2014] [Indexed: 12/27/2022] Open
Abstract
Advances in medical science and technology allow people live longer lives, which results in age-related problems. Humans cannot avoid the various aged-related alterations of aging; in other words, humans cannot remain young at molecular and cellular levels. In 1956, Harman proposed the "free radical theory of aging" to explain the molecular mechanisms of aging. Telomere length, and accumulation of DNA or mitochondrial damage are also considered to be mechanisms of aging. On the other hand, stem cells are essential for maintaining tissue homeostasis by replacing parenchymal cells; therefore, the stem cell theory of aging is also used to explain the progress of aging. Importantly, the stem cell theory of aging is likely related to other theories. In addition, recent studies have started to reveal the essential roles of tissue-resident mesenchymal progenitors/stem cells/stromal cells in maintaining tissue homeostasis, and some evidence of their fundamental roles in the progression of aging has been presented. In this review, we discuss how stem cell and other theories connect to explain the progress of aging. In addition, we consider the mesenchymal progenitor theory of aging to describing the process of aging.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Yuran Ma
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| |
Collapse
|
21
|
Fukada SI, Ma Y, Ohtani T, Watanabe Y, Murakami S, Yamaguchi M. Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 2013; 4:317. [PMID: 24273513 PMCID: PMC3824104 DOI: 10.3389/fphys.2013.00317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/14/2013] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Subsets of mammalian adult stem cells reside in the quiescent state for prolonged periods of time. This state, which is reversible, has long been viewed as dormant and with minimal basal activity. Recent advances in adult stem cell isolation have provided insights into the epigenetic, transcriptional and post-transcriptional control of quiescence and suggest that quiescence is an actively maintained state in which signalling pathways are involved in maintaining a poised state that allows rapid activation. Deciphering the molecular mechanisms regulating adult stem cell quiescence will increase our understanding of tissue regeneration mechanisms and how they are dysregulated in pathological conditions and in ageing.
Collapse
Affiliation(s)
- Tom H Cheung
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
23
|
Bowman EA, Bowman CR, Ahn JH, Kelly WG. Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Development 2013; 140:3703-13. [PMID: 23903194 DOI: 10.1242/dev.095778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA polymerase II (Pol II) elongation in metazoans is thought to require phosphorylation of serine 2 (Ser2-P) of the Pol II C-terminal domain (CTD) by the P-TEFb complex, CDK-9/cyclin T. Another Ser2 kinase complex, CDK-12/cyclin K, which requires upstream CDK-9 activity has been identified in Drosophila and human cells. We show that regulation of Ser2-P in C. elegans soma is similar to other metazoan systems, but Ser2-P in the germline is independent of CDK-9, and largely requires only CDK-12. The observed differences are not due to differential tissue expression as both kinases and their cyclin partners are ubiquitously expressed. Surprisingly, loss of CDK-9 from germ cells has little effect on Ser2-P, yet CDK-9 is essential for germline development. By contrast, loss of CDK-12 and Ser2-P specifically from germ cells has little impact on germline development or function, although significant loss of co-transcriptional H3K36 trimethylation is observed. These results show a reduced requirement for Pol II Ser2-P in germline development and suggest that generating Ser2-P is not the essential role of CDK-9 in these cells. Transcriptional elongation in the C. elegans germline thus appears to be uniquely regulated, which may be a novel facet of germline identity.
Collapse
|
24
|
Hong P, Chen K, Huang B, Liu M, Cui M, Rozenberg I, Chaqour B, Pan X, Barton ER, Jiang XC, Siddiqui MAQ. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration. J Clin Invest 2013; 122:3873-87. [PMID: 23023707 DOI: 10.1172/jci62818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023] Open
Abstract
The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases.
Collapse
Affiliation(s)
- Peng Hong
- Department of Cell Biology, State University of New York Downstate Medical Center,New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat Commun 2012; 3:903. [DOI: 10.1038/ncomms1890] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022] Open
|
26
|
BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A 2012; 109:6927-32. [PMID: 22509028 DOI: 10.1073/pnas.1120422109] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bromodomain protein, BRD4, has been identified recently as a therapeutic target in acute myeloid leukemia, multiple myeloma, Burkitt's lymphoma, NUT midline carcinoma, colon cancer, and inflammatory disease; its loss is a prognostic signature for metastatic breast cancer. BRD4 also contributes to regulation of both cell cycle and transcription of oncogenes, HIV, and human papilloma virus (HPV). Despite its role in a broad range of biological processes, the precise molecular mechanism of BRD4 function remains unknown. We report that BRD4 is an atypical kinase that binds to the carboxyl-terminal domain (CTD) of RNA polymerase II and directly phosphorylates its serine 2 (Ser2) sites both in vitro and in vivo under conditions where other CTD kinases are inactive. Phosphorylation of the CTD Ser2 is inhibited in vivo by a BRD4 inhibitor that blocks its binding to chromatin. Our finding that BRD4 is an RNA polymerase II CTD Ser2 kinase implicates it as a regulator of eukaryotic transcription.
Collapse
|
27
|
Functional Characterization of Melanocyte Stem Cells in Hair Follicles. J Invest Dermatol 2011; 131:2358-67. [DOI: 10.1038/jid.2011.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Freter R. Niche work when you can get it: collagen XVII and the melanocyte stem cell. Pigment Cell Melanoma Res 2011; 24:592-3. [PMID: 22489331 DOI: 10.1111/j.1755-148x.2011.00874.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 2011; 24:401-10. [PMID: 21466661 DOI: 10.1111/j.1755-148x.2011.00855.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most mammals are coated with pigmented hair. Melanocytes in each hair follicle produce melanin pigments for the hair during each hair cycle. The key to understanding the mechanism of cyclic melanin production is the melanocyte stem cell (MelSC) population, previously known as 'amelanotic melanocytes'. The MelSCs directly adhere to hair follicle stem cells, the niche cells for MelSCs and reside in the hair follicle bulge-subbulge area, the lower permanent portion of the hair follicle, to serve as a melanocyte reservoir for skin and hair pigmentation. MelSCs form a stem cell system within individual hair follicles and provide a 'hair pigmentary unit' for each cycle of hair pigmentation. This review focuses on the identification of MelSCs and their characteristics and explains the importance of the MelSC population in the mechanisms of hair pigmentation, hair greying, and skin repigmentation.
Collapse
Affiliation(s)
- Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
30
|
Abstract
Tumours comprise multiple phenotypically distinct subpopulations of cells, some of which are proposed to possess stem cell-like properties, being able to self-renew, seed and maintain tumours, and provide a reservoir of therapeutically resistant cells. Here, we use melanoma as a model to explore the validity of the cancer stem cell hypothesis in the light of accumulating evidence that melanoma progression may instead be driven by phenotype-switching triggered by genetic lesions that impose an increased sensitivity to changes in the tumour microenvironment. Although at any given moment cells within a tumour may exhibit differentiated, proliferative or invasive phenotypes, an ability to switch phenotypes implies that most cells will have the potential to adopt a stem cell-like identity. Insights into the molecular events underpinning phenotype-switching in melanoma highlight the close relationship between signalling pathways that generate, maintain and activate melanocyte stem cells as well as the inverse correlation between proliferation and invasive potentials. An understanding of phenotype-switching in melanoma, and in particular the signalling events that regulate the expression of the microphthalmia-associated transcription factor Mitf, points to new therapeutic opportunities aimed at eradicating therapeutically resistant stem cell-like melanoma cells.
Collapse
Affiliation(s)
- Keith S Hoek
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | | |
Collapse
|
31
|
Furuhashi H, Takasaki T, Rechtsteiner A, Li T, Kimura H, Checchi PM, Strome S, Kelly WG. Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics Chromatin 2010; 3:15. [PMID: 20704745 PMCID: PMC3146070 DOI: 10.1186/1756-8935-3-15] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/12/2010] [Indexed: 12/21/2022] Open
Abstract
Background The processes through which the germline maintains its continuity across generations has long been the focus of biological research. Recent studies have suggested that germline continuity can involve epigenetic regulation, including regulation of histone modifications. However, it is not clear how histone modifications generated in one generation can influence the transcription program and development of germ cells of the next. Results We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed loci. Conclusions Our data suggest a model in which MES-4 helps to maintain an 'epigenetic memory' of transcription that occurred in germ cells of previous generations, and that MES-4 and its epigenetic product are essential for normal germ cell development.
Collapse
|