1
|
Adair JE, Chandrasekaran D, Sghia-Hughes G, Haworth KG, Woolfrey AE, Burroughs LM, Choi GY, Becker PS, Kiem HP. Novel lineage depletion preserves autologous blood stem cells for gene therapy of Fanconi anemia complementation group A. Haematologica 2018; 103:1806-1814. [PMID: 29976742 PMCID: PMC6278989 DOI: 10.3324/haematol.2018.194571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).
Collapse
Affiliation(s)
- Jennifer E Adair
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | - Ann E Woolfrey
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | - Pamela S Becker
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Barboza N, Minakhina S, Medina DJ, Balsara B, Greenwood S, Huzzy L, Rabson AB, Steward R, Schaar DG. PDCD2 functions in cancer cell proliferation and predicts relapsed leukemia. Cancer Biol Ther 2014; 14:546-55. [PMID: 23760497 DOI: 10.4161/cbt.24484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PDCD2 is an evolutionarily conserved eukaryotic protein with unknown function. The Drosophlia PDCD2 ortholog Zfrp8 has an essential function in fly hematopoiesis. Zfrp8 mutants exhibit marked lymph gland hyperplasia that results from increased proliferation of partially differentiated hemocytes, suggesting Zfrp8 may participate in cell growth. Based on the above observations we have focused on the role of PDCD2 in human cancer cell proliferation and hypothesized that aberrant PDCD2 expression may be characteristic of human malignancies. We report that PDCD2 is highly expressed in human acute leukemia cells as well as in normal hematopoietic progenitors. PDCD2 knockdown in cancer cells impairs their proliferation, but not viability relative to parental cells, supporting the notion that PDCD2 overexpression facilitates cancer cell growth. Prospective analysis of PDCD2 in acute leukemia patients indicates PDCD2 RNA expression correlates with disease status and is a significant predictor of clinical relapse. PDCD2's role in cell proliferation and its high expression in human malignancies make it an attractive, novel potential molecular target for new anti-cancer therapies.
Collapse
Affiliation(s)
- Nora Barboza
- University of Medicine & Dentistry of New Jersey, Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Müller LUW, Williams DA. Finding the needle in the hay stack: hematopoietic stem cells in Fanconi anemia. Mutat Res 2009; 668:141-9. [PMID: 19508850 DOI: 10.1016/j.mrfmmm.2009.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/09/2009] [Accepted: 03/20/2009] [Indexed: 01/05/2023]
Abstract
Fanconi anemia is a rare bone marrow failure and cancer predisposition syndrome. Childhood onset of aplastic anemia is one of the hallmarks of this condition. Supportive therapy in the form of blood products, androgens, and hematopoietic growth factors may boost blood counts temporarily. However, allogeneic hematopoietic stem cell transplantation (HSCT) currently remains the only curative treatment option for the hematologic manifestations of Fanconi anemia (FA). Here we review current clinical and pre-clinical strategies for treating hematopoietic stem cell (HSC) failure, including the experience with mobilizing and collecting CD34+ hematopoietic stem and progenitor cells as target cells for somatic gene therapy, the current state of FA gene therapy trials, and future prospects for cell and gene therapy.
Collapse
Affiliation(s)
- Lars U W Müller
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
5
|
Refaai MA, Cusick RM, Paranjape G, Sutor LJ. Low CD34 collection from a healthy blood progenitor cell donor: A case report. J Clin Apher 2009; 24:262-4. [DOI: 10.1002/jca.20218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Koutna I, Klabusay M, Kohutova V, Krontorad P, Svoboda Z, Kozubek M, Mayer J. Evaluation of CD34+ - and Lin- -selected cells from peripheral blood stem cell grafts of patients with lymphoma during differentiation in culture ex vivo using a cDNA microarray technique. Exp Hematol 2006; 34:832-40. [PMID: 16797410 DOI: 10.1016/j.exphem.2006.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/06/2006] [Accepted: 04/04/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Hematopoietic stem cells (enriched in fraction of CD34+ cells) have the ability to regenerate hematopoiesis in all of its lineages, and this potential is clinically used in transplanting bone marrow or peripheral blood stem cells. Our objective was to assemble a suitable method for evaluating gene expression in enriched populations of hematopoietic stem cells. We compared biologic properties of cells cultured ex vivo obtained using two different ways of immunomagnetic separation (positive selection of CD34+ cells and negative selection of Lin- cells) by means of a cDNA microarray technique. METHODS CD34+ and Lin- cells were enriched from peripheral blood stem cell (PBSCs) grafts of patients with non-Hodgkin's lymphoma. Isolated cells were in the presence of cytokine PBSCs, Flt-3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. At days 0, 4, 6, 8, 10, 12, and 14 cells were harvested and analyzed by cDNA microarrays. Total cell expansion, CD34+, colony-forming unit for granulocyte-macrophage and megakaryocytes expansion, vitality, and phenotype of cells were also analyzed. RESULTS cDNA microarray analysis of cultured hematopoietic cells proved equivalence of the two enrichment methods for PBSC samples and helped us characterize differentiating cells cultured ex vivo. CONCLUSION Our methodologic approach is helpful in characterizing cultured hematopoietic cells cultured ex vivo, but it is also suitable for more general purposes. Equivalence of CD34+ and Lin- selection methods from PBSC samples proved by cDNA microarray may have an implication for graft manipulation in an experimental setting of hematopoietic transplantation. Total cell expansion and colony formation and phenotype from CD34+ selected and from Lin- samples were comparable.
Collapse
Affiliation(s)
- Irena Koutna
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
7
|
Flores-Guzmán P, Flores-Figueroa E, Martínez-Jaramillo G, Mayani H. In vitro characterization of two lineage-negative CD34+ cell-enriched hematopoietic cell populations from human UC blood. Cytotherapy 2005; 7:334-44. [PMID: 16162455 DOI: 10.1080/14653240500238228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND During the last few years there has been increasing interest, from both biologic and clinical points of view, in the ex vivo expansion of umbilical cord blood (UCB)-derived hematopoietic cells. This has brought about the need to characterize different cell populations present in UCB, and to explore different ex vivo approaches for the culture, expansion and biologic manipulation of these cells. METHODS By using a negative-selection method, two UCB cell populations were obtained that were enriched for primitive lineage-negative (Lin-) cells, including those expressing the CD34 Ag (35-93% of the total cells in each fraction). Population I was enriched for CD34+ Lin- cells, whereas population II was enriched for CD34+ CD38- Lin- cells. Both populations were cultured in serum-free liquid cultures supplemented with different combinations of early and late-acting recombinant cytokines (all of them added at 10 ng/mL). Every 5-7 days proliferation, expansion and differentiation capacities of each population were determined, for a total period of 25-42 days. RESULTS Both cell populations showed extensive proliferation and expansion capacities; however, population II [2300- and 232-fold increase in nucleated and colony-forming cell (CFC) numbers, respectively] was clearly superior in both parameters compared with population I (1120- and 20-fold increase in nucleated and CFC numbers, respectively). Depending on the cytokine combination used, granulocytes, macrophages and erythroblasts were preferentially produced. We also observed that both populations were highly sensitive to the inhibitory effects of tumor necrosis factor-alpha, even in the presence of stimulatory cytokines. DISCUSSION This study demonstrates that the two progenitor cell-enriched populations obtained by negative selection possess extensive proliferation and expansion potentials in vitro, generating significant numbers of both primitive and mature cells. These cells may be a good alternative to purified CD34+ cells, obtained by positive selection, for pre-clinical and clinical protocols aimed at the ex vivo expansion of UCB cells.
Collapse
Affiliation(s)
- P Flores-Guzmán
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, DF, Mexico
| | | | | | | |
Collapse
|
8
|
|
9
|
Huang Y, Yang J, Wang XB, Becker FF, Gascoyne PR. The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:481-90. [PMID: 10791899 PMCID: PMC2726259 DOI: 10.1089/152581699319939] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dielectrophoretic field-flow-fractionation (DEP-FFF) was used to purge human breast cancer MDA-435 cells from hematopoietic CD34+ stem cells. An array of interdigitated microelectrodes lining the bottom surface of a thin chamber was used to generate dielectrophoretic forces that levitated the cell mixture in a fluid flow profile. CD34+ stem cells were levitated higher, were carried faster by the fluid flow, and exited the separation chamber earlier than the cancer cells. Using on-line flow cytometry, efficient separation of the cell mixture was observed in less than 12 min, and CD34+ stem cell fractions with a purity >99.2% were obtained. The method of DEP-FFF is potentially applicable to many biomedical cell separation problems, including microfluidic-scale diagnosis and preparative-scale purification of cell subpopulations.
Collapse
Affiliation(s)
- Y Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Knutsen AP, Roodman ST, Ruiz ME, Mueller KR, Bouhasin JD. Development of a method of thymocyte differentiation of bone marrow-enriched CD34+CD38- cells in postnatal allogeneic cultured thymic epithelia to evaluate immunodeficiency disorders. Stem Cells 1996; 14:702-13. [PMID: 8948027 DOI: 10.1002/stem.140702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An in vitro model of CD34+CD38- stem cell (SC) differentiation in postnatal cultured thymic epithelia fragment (CTEF) cocultures is described. Sequential phenotypic analysis of the progeny of the SC-CTEF demonstrated predominantly thymocytes and minor populations of promyelocytes, monocytes and natural killer cells. Triple-positive CD3+CD4+CD8+, double-positive CD4+CD8+, and mature single-positive CD4+ and CD8+ T cells, which were TCR alpha beta+, were identified indicating normal thymocyte maturation. In kinetic studies, mature single-positive CD4+ T cells increased from 29% of total cells at one week to 54% at four weeks of coculture. These findings demonstrate that coculture of bone marrow-derived SC and allogeneic cultured thymic epithelia in vitro results in continuous normal predominantly thymocyte differentiation. The SC-CTEF cocultures were then infected with two different strains of human immunodeficiency virus. CD4+ thymocytes were markedly decreased. However, inhibition of early thymocyte maturation steps was also suggested by the presence of increased triple-negative and CD44+CD25-CD3-thymocytes and decreased CD44+CD25+ thymocytes. This model system of thymocyte maturation will be useful in the evaluation of primary T cell immunodeficiency disorders, gene therapy of SC and pharmacological augmentation of thymic function.
Collapse
Affiliation(s)
- A P Knutsen
- Pediatric Research Institute, St. Louis University Health Sciences Center, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
11
|
Servida F, Soligo D, Caneva L, Bertolini F, de Harven E, Campiglio S, Corsini C, Deliliers GL. Functional and morphological characterization of immunomagnetically selected CD34+ hematopoietic progenitor cells. Stem Cells 1996; 14:430-8. [PMID: 8843544 DOI: 10.1002/stem.140430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We evaluated the potential of immunomagnetically selected (miniMACS) progenitor cells to give rise to colony-forming cells and their precursors, detected as long-term culture-initiating cells (LTC-IC), as well as their capacity to expand in liquid cultures. A 90% mean purity, a 43.2% yield and a 55.8-fold enrichment were achieved from normal bone marrow. When corrected for enrichment, the mean number of committed progenitor cells and the frequency of LTC-IC (evaluated by means of limiting dilution assay [LDA]) were not statistically different in low density mononuclear cells or in the CD34-enriched fractions. In five cases CD34+ selected cells grown in a stroma-free long-term bone marrow culture system with the addition of stem cell factor, interleukin 3, interleukin 6 and GM-CSF every 48 h, showed a 15 (+/- 15) and 31 (+/- 21) mean colony forming unit-granulocyte/macrophage fold increase on cultures at days 7 and 14. However, when corrected for enrichment, the expansion capability of these cells was significantly lower than that of the unseparated fraction, particularly after the first week. Immediately after separation, electron microscopy revealed that the CD34+ selected fraction contained more than 45% of well-differentiated myeloid cells (MPO+), with iron beads preferentially clustered at one pole of the cell surface and sometimes already endocytosed in pinocytic vesicles. After 24 h and 48 h incubation at 37 degrees C, the majority of the cells showed no iron particles, but about 30% of the cells were iron-labeled phagocytic cells. The percentage of apoptotic cells with internalized iron was negligible. These data show that immunomagnetically separated CD34+ cells may have a slightly impaired short-term expansion capability, but give rise to both committed and more primitive progenitor cells. During the separation, the iron beads are internalized, rapidly processed in the cytoplasm and do not seem to interfere with in vitro growth.
Collapse
Affiliation(s)
- F Servida
- Fondazione Matarelli, Ospedale Maggiore, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
During the past few years, hematopoietic cell culture technologies for transplantation therapies have progressed significantly on several fronts. Advances include the discoveries of the growth factors thrombopoietin and Flt-3 ligand, the development of a variety of bioreactor systems, and results from preliminary clinical trials that demonstrate the efficacy of ex vivo expanded hematopoietic cells for transplantation therapy.
Collapse
Affiliation(s)
- P C Collins
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, USA.
| | | | | |
Collapse
|
13
|
Sharp JG, Bishop M, Chan WC, Greiner T, Joshi SS, Kessinger A, Reed E, Sanger W, Tarantolo S, Traystman M. Detection of minimal residual disease in hematopoietic tissues. Ann N Y Acad Sci 1995; 770:242-61. [PMID: 8597365 DOI: 10.1111/j.1749-6632.1995.tb31060.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J G Sharp
- Department of Cell Biology, University of Nebraska Medical Center, Omaha 68198-6395, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharp JG, Mann SL, Murphy B, Weekes C. Culture methods for the detection of minimal tumor contamination of hematopoietic harvests: a review. JOURNAL OF HEMATOTHERAPY 1995; 4:141-8. [PMID: 7551913 DOI: 10.1089/scd.1.1995.4.141] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The evaluation of minimal residual disease in patients and hematopoietic cell grafts is of considerable importance for staging disease, determining the response to treatment, and monitoring the efficiency of ex vivo purging or positive selection procedures. The most widely used techniques are immunocytochemical staining and the polymerase chain reaction; however, these assays do not measure the viability or clonogenic capacity of the detected cells. For this purpose, a culture technique must be used. This paper reviews the status, advantages, and limitations of this approach and the detection of tumor cells in bone marrow and peripheral blood.
Collapse
Affiliation(s)
- J G Sharp
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha 68198-6395, USA
| | | | | | | |
Collapse
|