1
|
Neutrophil Transcriptional Deregulation by the Periodontal Pathogen Fusobacterium nucleatum in Gastric Cancer: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:9584507. [PMID: 36033825 PMCID: PMC9410804 DOI: 10.1155/2022/9584507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Infection with the periodontal pathogen Fusobacterium nucleatum (F. nucleatum) has been associated with gastric cancer. The present study is aimed at uncovering the putative biological mechanisms underlying effects of F. nucleatum–mediated neutrophil transcriptional deregulation in gastric cancer. Materials and Methods A gene expression dataset pertaining to F. nucleatum-infected human neutrophils was utilized to identify differentially expressed genes (DEGs) using the GEO2R tool. Candidate genes associated with gastric cancer were sourced from the “Candidate Cancer Gene Database” (CCGD). Overlapping genes among these were identified as link genes. Functional profiling of the link genes was performed using “g:Profiler” tool to identify enriched Gene Ontology (GO) terms, pathways, miRNAs, transcription factors, and human phenotype ontology terms. Protein-protein interaction (PPI) network was constructed for the link genes using the “STRING” tool, hub nodes were identified as key candidate genes, and functionally enriched terms were determined. Results The gene expression dataset GEO20151 was downloaded, and 589 DEGs were identified through differential analysis. 886 candidate gastric cancer genes were identified in the CGGD database. Among these, 36 overlapping genes were identified as the link genes. Enriched GO terms included molecular function “enzyme building,” biological process “protein folding,'” cellular components related to membrane-bound organelles, transcription factors ER71 and Sp1, miRNAs miR580 and miR155, and several human phenotype ontology terms including squamous epithelium of esophagus. The PPI network contained 36 nodes and 53 edges, where the top nodes included PH4 and CANX, and functional terms related to intracellular membrane trafficking were enriched. Conclusion F nucleatum-induced neutrophil transcriptional activation may be implicated in gastric cancer via several candidate genes including DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis revealed membrane-bound organelle dysfunction, intracellular trafficking, transcription factors ER71 and Sp1, and miRNAs miR580 and miR155 as other candidate mechanisms, which should be investigated in experimental studies.
Collapse
|
2
|
Differential Etv2 threshold requirement for endothelial and erythropoietic development. Cell Rep 2022; 39:110881. [PMID: 35649376 PMCID: PMC9203129 DOI: 10.1016/j.celrep.2022.110881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Collapse
|
3
|
Lee TJ, Kang HK, Berry JC, Joo HG, Park C, Miller MJ, Choi K. ER71/ETV2 Promotes Hair Regeneration from Chemotherapeutic Drug-Induced Hair Loss by Enhancing Angiogenesis. Biomol Ther (Seoul) 2021; 29:545-550. [PMID: 33814416 PMCID: PMC8411022 DOI: 10.4062/biomolther.2021.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced alopecia and hair loss can be stressful in patients with cancer. The hair grows back, but sometimes the hair tends to stay thin. Therefore, understanding mechanisms regulating hair regeneration may improve the management of chemotherapy-induced alopecia. Previous studies have revealed that chemotherapeutic agents induce a hair follicle vascular injury. As hair growth is associated with micro-vessel regeneration, we postulated that the stimulation of angiogenesis might enhance hair regeneration. In particular, mice treated with 5-fluorouracil (5-FU) showed delayed anagen initiation and reduced capillary density when compared with untreated controls, suggesting that the retardation of anagen initiation by 5-FU treatment may be attributed to the loss of perifollicular micro-vessels. We investigated whether the ETS transcription factor ETV2 (aka ER71), critical for vascular development and regeneration, can promote angiogenesis and hair regrowth in a 5-FU-induced alopecia mouse model. Tie2-Cre; Etv2 conditional knockout (CKO) mice, which lack Etv2 in endothelial cells, presented similar hair regrowth rates as the control mice after depilation. Following 5-FU treatment, Tie2-Cre; Etv2 CKO mice revealed a significant reduction in capillary density, anagen induction, and hair restoration when compared with controls. Mice receiving lentiviral Etv2 injection after 5-FU treatment showed significantly improved anagen induction and hair regrowth. Two-photon laser scanning microscopy revealed that enforced Etv2 expression restored normal vessel morphology after 5-FU mediated vessel injury. Our data suggest that vessel regeneration strategies may improve hair regrowth after chemotherapeutic treatment.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Pharmacology, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeffrey C Berry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong-Gu Joo
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
5
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
6
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Li X, Moon G, Shin S, Zhang B, Janknecht R. Cooperation between ETS variant 2 and Jumonji domain‑containing 2 histone demethylases. Mol Med Rep 2018; 17:5518-5527. [PMID: 29393482 PMCID: PMC5865994 DOI: 10.3892/mmr.2018.8507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The E26 transformation-specific (ETS) variant 2 (ETV2) protein, also designated as ETS-related 71, is a member of the ETS transcription factor family and is essential for blood and vascular development in the embryo. The role of ETV2 in cancer has not yet been investigated. In the present study, the expression of ETV2 mRNA was identified in a variety of tumor types, including prostate carcinoma. In addition, ETV2 gene amplification was identified in several types of cancer, suggesting that ETV2 plays an oncogenic role in tumorigenesis. It was demonstrated that ETV2 forms complexes with two histone demethylases: Jumonji domain-containing (JMJD)2A and JMJD2D; JMJD2A has been previously reported as a driver of prostate cancer development. In the present study, it was reported that ETV2 exhibited the potential to stimulate the promoters of matrix metalloproteinases (MMPs), including MMP1 and MMP7, within LNCaP prostate cancer cells. JMJD2A and JMJD2D could synergize with ETV2 to activate the MMP1 promoter, whereas only JMJD2A stimulated the MMP7 promoter in cooperation with ETV2. Furthermore, ETV2 expression was positively associated with JMJD2A and JMJD2D mRNA levels in neuroendocrine prostate tumors, in which an ETV2 gene amplification rate of 17.8% was identified. Collectively, the results of the present study indicated that ETV2, JMJD2A and JMJD2D may jointly promote tumorigenesis, particularly neuroendocrine prostate tumors. In addition, the interaction with the JMJD2A and JMJD2D epigenetic regulators may be important in the ability of ETV2 to reprogram cells, modulate normal and cancer stem cells, and affect spermatogenesis.
Collapse
Affiliation(s)
- Xiaomeng Li
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gene Moon
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
8
|
Lee DH, Kim TS, Lee D, Lim DS. Mammalian sterile 20 kinase 1 and 2 are important regulators of hematopoietic stem cells in stress condition. Sci Rep 2018; 8:942. [PMID: 29343826 PMCID: PMC5772645 DOI: 10.1038/s41598-018-19637-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
The mammalian Hippo signaling pathway has been implicated in the self-renewal and differentiation of stem and progenitor cells. MST1 and MST2 (MST1/2) are core serine-threonine kinases in the Hippo signaling pathway, one of which, MST1, has been extensively investigated for its role in T cell and myeloid cell function. These studies have identified MST1 as a promising therapeutic target in immunological disease. However, the roles of MST1/2 in hematopoietic stem cell (HSC) function in vivo are not fully understood. Here, we report that mice with a conditional deletion of Mst1/2 exhibit impaired hematopoietic stem and progenitor cell (HSPC) function under stress condition. Furthermore, Mst1/2 deletion markedly altered mature cell output. Therefore, MST1/2 are indispensable for maintenance as well as function of stem and progenitor cells under steady state conditions and with transplantation stress.
Collapse
Affiliation(s)
- Da-Hye Lee
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Tae-Shin Kim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dongjun Lee
- Department of Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Korea.
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
9
|
Xu CX, Lee TJ, Sakurai N, Krchma K, Liu F, Li D, Wang T, Choi K. ETV2/ER71 regulates hematopoietic regeneration by promoting hematopoietic stem cell proliferation. J Exp Med 2017; 214:1643-1653. [PMID: 28461595 PMCID: PMC5460995 DOI: 10.1084/jem.20160923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023] Open
Abstract
Xu et al. show that Etv2 is required for hematopoietic stem and progenitor cell (HSPC) proliferation and expansion after bone marrow transplantation and hematopoietic injury. c-Kit functions downstream of Etv2 in mediating HSPC proliferation and expansion. Recent studies have established that hematopoietic stem cells (HSCs) are quiescent in homeostatic conditions but undergo extensive cell cycle and expansion upon bone marrow (BM) transplantation or hematopoietic injury. The molecular basis for HSC activation and expansion is not completely understood. In this study, we found that key developmentally critical genes controlling hematopoietic stem and progenitor cell (HSPC) generation were up-regulated in HSPCs upon hematopoietic injury. In particular, we found that the ETS transcription factor Ets variant 2 (Etv2; also known as Er71) was up-regulated by reactive oxygen species in HSPCs and was necessary in a cell-autonomous manner for HSPC expansion and regeneration after BM transplantation and hematopoietic injury. We found c-Kit to be downstream of ETV2. As such, lentiviral c-Kit expression rescued Etv2-deficient HSPC proliferation defects in vitro and in short-term BM transplantation in vivo. These findings demonstrate that Etv2 is an important regulator of hematopoietic regeneration.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,The People's Hospital of Hunan Province and Hunan Normal University Institute for Clinical and Translational Science, Changsha, Hunan 410006, China
| | - Tae-Jin Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nagisa Sakurai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 .,Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Casie Chetty S, Rost MS, Enriquez JR, Schumacher JA, Baltrunaite K, Rossi A, Stainier DYR, Sumanas S. Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression. Dev Biol 2017; 424:147-161. [PMID: 28279709 DOI: 10.1016/j.ydbio.2017.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/28/2017] [Accepted: 03/05/2017] [Indexed: 01/24/2023]
Abstract
Vasculogenesis involves the differentiation of vascular endothelial progenitors de novo from undifferentiated mesoderm, their migration and coalescence to form the major embryonic vessels and the acquisition of arterial or venous identity. Vascular Endothelial Growth Factor (Vegf) signaling plays multiple roles during vascular development. However, its function during embryonic vasculogenesis has been controversial. Previous studies have implicated Vegf signaling in either regulating arteriovenous specification or overall vascular endothelial differentiation. To clarify the role of Vegf in embryonic vasculogenesis and identify its downstream targets, we used chemical inhibitors of Vegf receptor (Vegfr) signaling in zebrafish embryos as well as zebrafish genetic mutants. A high level of chemical inhibition of Vegfr signaling resulted in the reduction of overall vascular endothelial marker gene expression, including downregulation of both arterial and venous markers, ultimately leading to the apoptosis of vascular endothelial cells. In contrast, a low level of Vegfr inhibition specifically blocked arterial specification while the expression of venous markers appeared largely unaffected or increased. Inhibition of Vegfr signaling prior to the initiation of vasculogenesis reduced overall vascular endothelial differentiation, while inhibition of Vegfr signaling starting at mid-somitogenesis stages largely inhibited arterial specification. Conversely, Vegf overexpression resulted in the expansion of both arterial and pan-endothelial markers, while the expression of several venous-specific markers was downregulated. We further show that Vegf signaling affects overall endothelial differentiation by modulating the expression of the ETS transcription factor etv2/ etsrp. etv2 expression was downregulated in Vegfr- inhibited embryos, and expanded in Vegfaa-overexpressing embryos. Furthermore, vascular-specific overexpression of etv2 in Vegfr-inhibited embryos rescued defects in vascular endothelial differentiation. Similarly, vegfaa genetic mutants displayed a combination of the two phenotypes observed with chemical Vegfr inhibition: the expression of arterial and pan-endothelial markers including etv2 was downregulated while the expression of most venous markers was either expanded or unchanged. Based on these results we propose a revised model which explains the different phenotypes observed upon inhibition of Vegf signaling: low levels of Vegf signaling promote overall vascular endothelial differentiation and cell survival by upregulating etv2 expression, while high levels of Vegf signaling promote arterial and inhibit venous specification.
Collapse
Affiliation(s)
- Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Megan S Rost
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Jacob Ryan Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Kristina Baltrunaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Zhao H, Xu C, Lee TJ, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration. Dev Dyn 2017; 246:318-327. [DOI: 10.1002/dvdy.24483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Canxin Xu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Tae-Jin Lee
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Fang Liu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Kyunghee Choi
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
- Developmental; Regenerative, and Stem Cell Biology Program, Washington University School of Medicine; St. Louis Missouri
| |
Collapse
|
12
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Lee D, Wang YH, Kalaitzidis D, Ramachandran J, Eda H, Sykes DB, Raje N, Scadden DT. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest 2016; 126:1300-10. [PMID: 26927669 PMCID: PMC4811118 DOI: 10.1172/jci84620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/14/2016] [Indexed: 12/27/2022] Open
Abstract
Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways.
Collapse
Affiliation(s)
- Dongjun Lee
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ying-Hua Wang
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Demetrios Kalaitzidis
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | | | - Homare Eda
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Noopur Raje
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David T. Scadden
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
15
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
16
|
Liu F, Li D, Yu YYL, Kang I, Cha MJ, Kim JY, Park C, Watson DK, Wang T, Choi K. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2. EMBO Rep 2015; 16:654-69. [PMID: 25802403 DOI: 10.15252/embr.201439939] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 11/09/2022] Open
Abstract
The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yik Yeung Lawrence Yu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Inyoung Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Min-Ji Cha
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ju Young Kim
- Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Lee D, Sykes SM, Kalaitzidis D, Lane AA, Kfoury Y, Raaijmakers MHGP, Wang YH, Armstrong SA, Scadden DT. Transmembrane Inhibitor of RICTOR/mTORC2 in Hematopoietic Progenitors. Stem Cell Reports 2014; 3:832-40. [PMID: 25418727 PMCID: PMC4235746 DOI: 10.1016/j.stemcr.2014.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Central to cellular proliferative, survival, and metabolic responses is the serine/threonine kinase mTOR, which is activated in many human cancers. mTOR is present in distinct complexes that are either modulated by AKT (mTORC1) or are upstream and regulatory of it (mTORC2). Governance of mTORC2 activity is poorly understood. Here, we report a transmembrane molecule in hematopoietic progenitor cells that physically interacts with and inhibits RICTOR, an essential component of mTORC2. Upstream of mTORC2 (UT2) negatively regulates mTORC2 enzymatic activity, reducing AKTS473, PKCα, and NDRG1 phosphorylation and increasing FOXO transcriptional activity in an mTORC2-dependent manner. Modulating UT2 levels altered animal survival in a T cell acute lymphoid leukemia (T-ALL) model that is known to be mTORC2 sensitive. These studies identify an inhibitory component upstream of mTORC2 in hematopoietic cells that can reduce mortality from NOTCH-induced T-ALL. A transmembrane inhibitor of mTORC2 may provide an attractive target to affect this critical cell regulatory pathway. UT2 is a transmembrane inhibitor of mTORC2 in hematopoietic progenitors UT2 directly binds RICTOR, limiting the kinase activity of mTORC2 on pAKTS473 UT2 modulates the outcome of an mTORC2-dependent hematopoietic cancer
Collapse
Affiliation(s)
- Dongjun Lee
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Stephen M Sykes
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Demetrios Kalaitzidis
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Andrew A Lane
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marc H G P Raaijmakers
- Department of Hematology and Erasmus Stem Cell Institute, Erasmus University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Scott A Armstrong
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat Commun 2014; 5:4372. [PMID: 25019369 PMCID: PMC4107340 DOI: 10.1038/ncomms5372] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/11/2014] [Indexed: 12/26/2022] Open
Abstract
Advancing pluripotent stem cell technologies for modeling hematopoietic stem cell development and blood therapies requires identifying key regulators of hematopoietic commitment from human pluripotent stem cells (hPSCs). Here, by screening the effect of 27 candidate factors, we reveal two groups of transcriptional regulators capable of inducing distinct hematopoietic programs from hPSCs: panmyeloid (ETV2 and GATA2) and erythro-megakaryocytic (GATA2 and TAL1). In both cases, these transcription factors directly convert hPSCs to endothelium, which subsequently transforms into blood cells with pan-myeloid or erythromegakaryocytic potential. These data demonstrate that two distinct genetic programs regulate the hematopoietic development from hPSCs and that both of these programs specify hPSCs directly to hemogenic endothelial cells. Additionally, this study provides a novel method for the efficient induction of blood and endothelial cells from hPSCs via overexpression of modified mRNA for the selected transcription factors.
Collapse
|
19
|
Glenn NO, Schumacher JA, Kim HJ, Zhao EJ, Skerniskyte J, Sumanas S. Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish. Dev Biol 2014; 393:149-159. [PMID: 24956419 DOI: 10.1016/j.ydbio.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022]
Abstract
Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM). An ETS-family transcription factor Etsrp/Etv2/ER71 has been implicated in vasculogenesis and hematopoiesis in multiple vertebrates. However, its role during neutrophil development is not well understood. Here we demonstrate using zebrafish embryos that Etv2 has a specific cell-autonomous function during primitive neutropoiesis in the anterior lateral plate mesoderm (ALPM) but has little effect on erythropoiesis or the posterior lateral plate mesoderm (PLPM) expression of neutrophil marker myeloperoxidase mpo/mpx. Our results argue that ALPM-derived neutrophils originate from etv2-expressing cells which downregulate etv2 during neutropoiesis. We further show that Scl functions downstream of Etv2 in anterior neutropoiesis. Additionally, we demonstrate that mpx expression within the PLPM overlaps with gata1 expression, potentially marking the cells with a dual myelo-erythroid potential. Intriguingly, initiation of mpx expression in the PLPM is dependent on gata1 but not etv2 function. Our results demonstrate that mpx expression is controlled differently in the ALPM and PLPM regions and describe novel roles for etv2 and gata1 during primitive neutropoiesis.
Collapse
Affiliation(s)
- Nicole O Glenn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Hyon J Kim
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Emma J Zhao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurate Skerniskyte
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
20
|
Behrens AN, Zierold C, Shi X, Ren Y, Koyano-Nakagawa N, Garry DJ, Martin CM. Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells Dev 2014; 23:2004-13. [PMID: 24762086 DOI: 10.1089/scd.2013.0525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vasculogenesis/angiogenesis is one of the earliest processes that occurs during embryogenesis. ETV2 and SOX7 were previously shown to play a role in endothelial development; however, their mechanistic interaction has not been defined. In the present study, concomitant expression of Etv2 and Sox7 in endothelial progenitor cells was verified. ETV2 was shown to be a direct upstream regulator of Sox7 that binds to ETV2 binding elements in the Sox7 upstream regulatory region and activates transcription. We observed that SOX7 over-expression can mimic ETV2 and increase endothelial progenitor cells in embryonic bodies (EBs), while knockdown of Sox7 is able to block ETV2-induced increase in endothelial progenitor cell formation. Angiogenic sprouting was increased by ETV2 over-expression in EBs, and it was significantly decreased in the presence of Sox7 shRNA. Collectively, these studies support the conclusion that ETV2 directly regulates Sox7, and that ETV2 governs endothelial development by regulating transcriptional networks which include Sox7.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
21
|
Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev Biol 2014; 389:208-18. [PMID: 24583263 DOI: 10.1016/j.ydbio.2014.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
Abstract
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
Collapse
|
22
|
Kobayashi K, Ding G, Nishikawa SI, Kataoka H. Role of Etv2-positive cells in the remodeling morphogenesis during vascular development. Genes Cells 2013; 18:704-21. [PMID: 23795570 DOI: 10.1111/gtc.12070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023]
Abstract
Etv2 is a critical determinant for the commitment of endothelial (EC) and hematopoietic (HPC) cells from mesoderm. Etv2 is assumed to be transiently required for EC commitment but dispensable after most ECs differentiate around E9.5. To confirm the time window of Etv2 requirement, Etv2 was ablated at different time points using ROSA26CreER mice. Unexpectedly, Etv2 ablation at E9.5 caused vascular remodeling defects in cranial and yolk sac vasculature. Immunostaining showed that Etv2+/VE-cadherin (VECAD)- cells were present around forming vasculature, mostly co-expressing Flk-1 with a small number of Etv2+/VECAD+ cells, indicating that Etv2+/Flk-1+/VECAD- cells are the major Etv2+ population promoting vascular remodeling around E9.5. Gene expression analysis showed up-regulation of Fgf proteins, Il-6, Glypican-3 and matrix metalloproteases in Etv2+/VEDAC- cells over Etv2-/VECAD+ mature ECs. Blockade of those factors caused reduced EC sprouting in ex vivo explant culture from E9.5 embryos, suggesting the functional significance of environmental factors derived from Etv2+ cells. Altogether, we propose that Etv2+/VEDAC- cells around E9.5-E10.5 provide extracellular factors to complete vascular morphogenesis in addition to becoming differentiated ECs incorporated into vessels. This insight for the new role of Ets protein in perivascular Flk-1+/VECAD-/(Etv2+) cells to induce expression of angiogenic factors may provide another strategy to control angiogenesis.
Collapse
Affiliation(s)
- Kumiko Kobayashi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
23
|
Koyano-Nakagawa N, Kweon J, Iacovino M, Shi X, Rasmussen TL, Borges L, Zirbes KM, Li T, Perlingeiro RCR, Kyba M, Garry DJ. Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 2013; 30:1611-23. [PMID: 22628281 DOI: 10.1002/stem.1131] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages; however, the precise roles of Etv2 in yolk sac development remains unclear. In this study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2(+), c-kit(+), and CD41(+) hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP(+) population. In the Etv2 mutant yolk sac, Tie2(+) cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during embryoid body differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using electrophoretic mobility shift assay, chromatin immunoprecipitation, transcriptional assays, and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hematoendothelial development, and that Lmo2 is one of the downstream targets of Etv2.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart-Institute, Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Curr Opin Hematol 2012; 19:199-205. [PMID: 22406820 DOI: 10.1097/moh.0b013e3283523e07] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Vasculogenesis and hematopoiesis are essential for development. Recently, the ETS domain transcription factor Etv2 has been identified as an essential regulator of vasculogenesis and hematopoiesis. Here, we review the recent studies that have established the critical role of Etv2 in the specification of mesoderm to blood and endothelial cells. RECENT FINDINGS Loss and gain-of-function studies have demonstrated the conserved role of Etv2 in endothelial and hematopoietic development. Recent studies have placed Etv2 at or near the top of the hierarchy in specification of these lineages and have begun to dissect the upstream regulators and downstream effectors of Etv2 function using multiple model organisms and experimental systems. SUMMARY Etv2 is essential for the specification of endothelial and hematopoietic lineages. Understanding the mechanisms through which Etv2 specifies endothelial and blood cells by defining upstream transcriptional regulators and cofactors will lead to greater insight into vasculogenesis and hematopoiesis, and may help to identify therapeutic targets to treat vascular disorders or to promote or inhibit vessel growth.
Collapse
|
25
|
Wareing S, Mazan A, Pearson S, Göttgens B, Lacaud G, Kouskoff V. The Flk1-Cre-mediated deletion of ETV2 defines its narrow temporal requirement during embryonic hematopoietic development. Stem Cells 2012; 30:1521-31. [PMID: 22570122 DOI: 10.1002/stem.1115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During embryonic development, the emergence of hematopoiesis and vasculogenesis is tightly associated, with many transcription factors implicated in both developmental processes. Among those factors, ETV2 acts at the top of the hierarchy and controls the formation of both lineages. However, it is not known at which stage of mesoderm development ETV2 is acting and whether ETV2 activity is further required once mesodermal precursors have been specified to the hematopoietic and endothelial fates. In this study, we characterize the developmental window during which ETV2 expression is required for hematopoietic and endothelial development. Using cre-mediated deletion of ETV2, we demonstrate that ETV2 is acting prior to or at the time of FLK1 expression in mesodermal precursors to initiate the hematopoietic and endothelial program. Using the in vitro differentiation of embryonic stem cells as a model system, we further show that ETV2 re-expression in Etv2(-/-) Flk1-negative precursors drives hematopoiesis specification and switches on the expression of most genes known to be implicated in hematopoietic and endothelial development. Among the downstream targets of ETV2, we identify the transcription factors SCL, GATA2, and FLI1 known to operate a recursive loop controlling hematopoietic development. Surprisingly, SCL re-expression in Etv2(-/-) cells fully rescues hematopoiesis, while the re-expression of FLI1 or GATA2 promotes only a very limited rescue. Altogether, our data establish that ETV2 is required very transiently to specify mesodermal precursors to hematopoiesis and vasculogenesis and that SCL is one of the key downstream targets of ETV2 in controlling hematopoietic specification.
Collapse
Affiliation(s)
- Sarah Wareing
- Cancer Research UK Stem Cell Hematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Hayashi M, Pluchinotta M, Momiyama A, Tanaka Y, Nishikawa SI, Kataoka H. Endothelialization and altered hematopoiesis by persistent Etv2 expression in mice. Exp Hematol 2012; 40:738-750.e11. [PMID: 22659386 DOI: 10.1016/j.exphem.2012.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
Etv2 is a master gene for the commitment of hematopoietic/endothelial cells and is a potent inducer of endothelial/hematopoietic cells from embryonic stem cells. Etv2 is highly expressed in endothelial/hematopoietic precursors but is downregulated when they are differentiated, indicating that Etv2 should have transient but not constitutive function. However, relatively little attention has been paid to the importance of transient Etv2 expression. To determine whether transient Etv2 expression is essential to normal development and cell differentiation, we generated mice that constitutively express Etv2 from a Cre-activatable ROSA26 locus in endothelial/hematopoietic, somite, or neuronal lineages. Constitutive Etv2 expression caused profound phenotypes in hematopoietic/endothelial cells, with little effect on somite or neuronal lineages. In hematopoietic/endothelial lineages, constitutive Etv2 expression induced by Tie-2 Cre transgene caused abnormal yolk sac vasculature. Prolonged vascular endothelial cadherin expression and decreased B lymphopoiesis were observed in Etv2 expressing vascular endothelial cadherin(+)/CD45(+) cells, indicating that Etv2 forces endothelial program on hematopoietic cells. Etv2 expression in adult hematopoietic cells by Vav-iCre transgene also conferred an endothelial phenotype on hematopoietic stem cells and suppressed hematopoiesis, with erythropoiesis severely affected. We conclude that constitutive Etv2 expression perturbs vascular development and hematopoiesis. While promoting hematopoiesis/vasculogenesis, Etv2 expression should be tightly regulated to achieve normal vascular development and hematopoiesis.
Collapse
Affiliation(s)
- Misato Hayashi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|