1
|
Pastor-Alonso O, Durá I, Bernardo-Castro S, Varea E, Muro-García T, Martín-Suárez S, Encinas-Pérez JM, Pineda JR. HB-EGF activates EGFR to induce reactive neural stem cells in the mouse hippocampus after seizures. Life Sci Alliance 2024; 7:e202201840. [PMID: 38977310 PMCID: PMC11231495 DOI: 10.26508/lsa.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Irene Durá
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Sara Bernardo-Castro
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Emilio Varea
- Faculty of Biology, University of Valencia, Valencia, Spain
| | - Teresa Muro-García
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Juan Manuel Encinas-Pérez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Ikerbasque, The Basque Foundation for Science, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Jose Ramon Pineda
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| |
Collapse
|
2
|
Lulla RR, Buxton A, Krailo MD, Lazow MA, Boue DR, Leach JL, Lin T, Geller JI, Kumar SS, Nikiforova MN, Chandran U, Jogal SS, Nelson MD, Onar-Thomas A, Haas-Kogan DA, Cohen KJ, Kieran MW, Gajjar A, Drissi R, Pollack IF, Fouladi M. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children's Oncology Group Study. Neurooncol Adv 2024; 6:vdae035. [PMID: 38596718 PMCID: PMC11003537 DOI: 10.1093/noajnl/vdae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.
Collapse
Affiliation(s)
- Rishi R Lulla
- Department of Pediatrics, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Allen Buxton
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Mark D Krailo
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Margot A Lazow
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boue
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James L Leach
- Department of Radiology and Medical Imaging, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Marina N Nikiforova
- Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sachin S Jogal
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marvin D Nelson
- Department of Radiology, Children’s Hospital Los Angeles, Keck University of Southern California School of Medicine, Los Angeles, California, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth J Cohen
- Division of Pediatric Oncology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark W Kieran
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ian F Pollack
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maryam Fouladi
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
3
|
Umaru B, Sengupta S, Senthil Kumar S, Drissi R. Alternative Lengthening of Telomeres in Pediatric High-Grade Glioma and Therapeutic Implications. Cancers (Basel) 2023; 15:3070. [PMID: 37370681 DOI: 10.3390/cancers15123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine glioma (DIPG), are highly aggressive tumors with dismal prognoses despite multimodal therapy including surgery, radiation therapy, and chemotherapy. To achieve cellular immortality cancer cells must overcome replicative senescence and apoptosis by activating telomere maintenance mechanisms (TMMs) through the reactivation of telomerase activity or using alternative lengthening of telomere (ALT) pathways. Although the ALT phenotype is more prevalent in pHGGs compared to adult HGGs, the molecular pathway and the prognostic significance of ALT activation are not well understood in pHGGs. Here, we report the heterogeneity of TMM in pHGGs and their association with genetic alterations. Additionally, we show that sensitivity to the protein kinase ataxia telangiectasia- and RAD3-related protein (ATR) inhibitor and the ATR downstream target CHK1 is not specific to pHGG ALT-positive cells. Together, these findings underscore the need for novel therapeutic strategies to target ALT in pHGG tumors.
Collapse
Affiliation(s)
- Banlanjo Umaru
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satarupa Sengupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
5
|
Brosnan-Cashman JA, Davis CM, Diplas BH, Meeker AK, Rodriguez FJ, Heaphy CM. SMARCAL1 loss and alternative lengthening of telomeres (ALT) are enriched in giant cell glioblastoma. Mod Pathol 2021; 34:1810-1819. [PMID: 34103668 DOI: 10.1038/s41379-021-00841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Subsets of high-grade gliomas, including glioblastoma (GBM), are known to utilize the alternative lengthening of telomeres (ALT) pathway for telomere length maintenance. However, the telomere maintenance profile of one subtype of GBM-giant cell GBM-has not been extensively studied. Here, we investigated the prevalence of ALT, as well as ATRX and SMARCAL1 protein loss, in a cohort of classic giant cell GBM and GBM with giant cell features. To determine the presence of ALT, a telomere-specific fluorescence in situ hybridization assay was performed on 15 cases of classic giant cell GBM, 28 additional GBMs found to have giant cell features, and 1 anaplastic astrocytoma with giant cell features. ATRX, SMARCAL1, and IDH1 protein status were assessed in a proportion of cases by immunohistochemistry and were compared to clinical-pathologic and molecular characteristics. In the overall cohort of 44 cases, 19 (43%) showed evidence of ALT. Intriguingly, of the ALT-positive cases, only 9 (47.4%) displayed loss of the ALT suppressor ATRX by immunohistochemistry. Since inactivating mutations in SMARCAL1 have been identified in ATRX wild-type ALT-positive gliomas, we developed an immunohistochemistry assay for SMARCAL1 protein expression using genetically validated controls. Of the 19 ALT-positive cases, 6 (31.5%) showed loss or mis-localization of SMARCAL1 by immunohistochemistry. Of these cases, four retained ATRX protein expression, while two cases also displayed ATRX loss. Additionally, we assessed five cases from which multiple temporal samples were available and ALT status was concordant between both tumor biopsies. In summary, we have identified a subset of giant cell GBM that utilize the ALT telomere maintenance mechanism. Importantly, in addition to ATRX loss, ALT-positive tumors harboring SMARCAL1 alterations are prevalent in giant cell GBM.
Collapse
Affiliation(s)
- Jacqueline A Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,American Association for Cancer Research, Publications Division, Boston, MA, USA
| | - Christine M Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bill H Diplas
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Chatterjee D, Chakrabarti O. Role of stress granules in modulating senescence and promoting cancer progression: Special emphasis on glioma. Int J Cancer 2021; 150:551-561. [PMID: 34460104 DOI: 10.1002/ijc.33787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
da Silva GG, Morais KS, Arcanjo DS, de Oliveira DM. Clinical Relevance of Alternative Lengthening of Telomeres in Cancer. Curr Top Med Chem 2020; 20:485-497. [PMID: 31924155 DOI: 10.2174/1568026620666200110112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
Collapse
Affiliation(s)
- Guilherme G da Silva
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Karollyne S Morais
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| | - Daniel S Arcanjo
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Diêgo M de Oliveira
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil.,Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| |
Collapse
|
8
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
9
|
The HIF1α/JMY pathway promotes glioblastoma stem-like cell invasiveness after irradiation. Sci Rep 2020; 10:18742. [PMID: 33128011 PMCID: PMC7603339 DOI: 10.1038/s41598-020-75300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/13/2020] [Indexed: 01/28/2023] Open
Abstract
Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.
Collapse
|
10
|
Polo Y, Luzuriaga J, Iturri J, Irastorza I, Toca-Herrera JL, Ibarretxe G, Unda F, Sarasua JR, Pineda JR, Larrañaga A. Nanostructured scaffolds based on bioresorbable polymers and graphene oxide induce the aligned migration and accelerate the neuronal differentiation of neural stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102314. [PMID: 33059092 DOI: 10.1016/j.nano.2020.102314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
Within the field of neural tissue engineering, there is a huge need for the development of materials that promote the adhesion, aligned migration and differentiation of stem cells into neuronal and supportive glial cells. In this study, we have fabricated bioresorbable elastomeric scaffolds combining an ordered nanopatterned topography together with a surface functionalization with graphene oxide (GO) in mild conditions. These scaffolds allowed the attachment of murine neural stem cells (NSCs) without the need of any further coating of its surface with extracellular matrix adhesion proteins. The NSCs were able to give rise to both immature neurons and supporting glial cells over the nanostructured scaffolds in vitro, promoting their aligned migration in cell clusters following the nanostructured grooves. This system has the potential to reestablish spatially oriented neural precursor cell connectivity, constituting a promising tool for future cellular therapy including nerve tissue regeneration.
Collapse
Affiliation(s)
- Yurena Polo
- Polimerbio SL, Donostia-San Sebastian, Spain
| | - Jon Luzuriaga
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose-Ramon Sarasua
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Jose Ramon Pineda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
11
|
Farooqi A, Yang J, Sharin V, Ezhilarasan R, Danussi C, Alvarez C, Dharmaiah S, Irvin D, Huse J, Sulman EP. Identification of patient-derived glioblastoma stem cell (GSC) lines with the alternative lengthening of telomeres phenotype. Acta Neuropathol Commun 2019; 7:76. [PMID: 31097032 PMCID: PMC6521362 DOI: 10.1186/s40478-019-0732-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022] Open
|
12
|
Robinson NJ, Taylor DJ, Schiemann WP. Stem cells, immortality, and the evolution of metastatic properties in breast cancer: telomere maintenance mechanisms and metastatic evolution. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:39. [PMID: 31440584 PMCID: PMC6706062 DOI: 10.20517/2394-4722.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most significant cause of cancer-related death in women around the world. The vast majority of breast cancer-associated mortality stems from metastasis, which remains an incurable disease state. Metastasis results from evolution of clones that possess the insidious properties required for dissemination and colonization of distant organs. These clonal populations are descended from breast cancer stem cells (CSCs), which are also responsible for their prolonged maintenance and continued evolution. Telomeres impose a lifespan on cells that can be extended when they are actively elongated, as occurs in CSCs. Thus, changes in telomere structure serve to promote the survival of CSCs and subsequent metastatic evolution. The selection of telomere maintenance mechanism (TMM) has important consequences not only for CSC survival and evolution, but also for their coordination of various signaling pathways that choreograph the metastatic cascade. Targeting the telomere maintenance machinery may therefore provide a boon to the treatment of metastatic breast cancer. Here we review the two major TMMs and the roles they play in the development of stem and metastatic breast cancer cells. We also highlight current and future approaches to targeting these mechanisms in clinical settings to alleviate metastatic breast cancers.
Collapse
Affiliation(s)
- Nathaniel J. Robinson
- Department of Pathology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - Derek J. Taylor
- Department of Pharmacology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve
University, Cleveland, OH 44106 USA
| |
Collapse
|
13
|
Luzuriaga J, Pastor-Alonso O, Encinas JM, Unda F, Ibarretxe G, Pineda JR. Human Dental Pulp Stem Cells Grown in Neurogenic Media Differentiate Into Endothelial Cells and Promote Neovasculogenesis in the Mouse Brain. Front Physiol 2019; 10:347. [PMID: 30984027 PMCID: PMC6447688 DOI: 10.3389/fphys.2019.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have the capacity to give rise to cells with neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult genetically unmodified human DPSCs cultured in NeurocultTM (Stem Cell Technologies), a cell culture medium without serum which can be alternatively supplemented for the expansion and/or differentiation of adult neural stem cells (NSCs). Our results show that non-genetically modified human adult DPSCs cultured with Neurocult NS-A proliferation supplement generated neurosphere-like dentospheres expressing the NSC markers Nestin and glial fibrillary acidic protein (GFAP), but also the vascular endothelial cell marker CD31. Remarkably, 1 month after intracranial graft into athymic nude mice, human CD31+/CD146+ and Nestin+ DPSC-derived cells were found tightly associated with both the endothelial and pericyte layers of brain vasculature, forming full blood vessels of human origin which showed an increased laminin staining. These results are the first demonstration that DPSC-derived cells contributed to the generation of neovasculature within brain tissue, and that Neurocult and other related serum-free cell culture media may constitute a fast and efficient way to obtain endothelial cells from human DPSCs.
Collapse
Affiliation(s)
- Jon Luzuriaga
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Fernando Unda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gaskon Ibarretxe
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Ramon Pineda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
14
|
Bakhos-Douaihy D, Desmaze C, Jeitany M, Gauthier LR, Biard D, Junier MP, Chneiweiss H, Boussin FD. ALT cancer cells are specifically sensitive to lysine acetyl transferase inhibition. Oncotarget 2019; 10:773-784. [PMID: 30774779 PMCID: PMC6366824 DOI: 10.18632/oncotarget.26616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Some cancer cells elongate their telomeres through the ALT (alternative lengthening of telomeres) pathway, which is based on homologous recombination for the addition of telomere repeats without telomerase activity. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF), two homologous lysine acetyltransferases, exert opposite effects on the ALT pathway, inhibiting or favoring it respectively. Here we show that ALT cells are particularly sensitive to the inhibition of acetyltransferases activities using Anacardic Acid (AA). AA treatment recapitulates the effect of PCAF knockdown on several ALT features, suggesting that AA decreased the ALT mechanism through the inhibition of lysine transferase activity of PCAF, but not that of GCN5. Furthermore, AA specifically sensitizes human ALT cells to radiation as compared to telomerase-positive cells suggesting that the inhibition of lysine acetyltransferases activity may be used to increase the radiotherapy efficiency against ALT cancers.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM U1276, Fontenay-aux-Roses, France.,Université Paris-Diderot, U1276, Fontenay-aux-Roses, France.,Université Paris-Sud, U1276, Fontenay-aux-Roses, France
| | - Chantal Desmaze
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM U1276, Fontenay-aux-Roses, France.,Université Paris-Diderot, U1276, Fontenay-aux-Roses, France.,Université Paris-Sud, U1276, Fontenay-aux-Roses, France
| | - Maya Jeitany
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM U1276, Fontenay-aux-Roses, France.,Université Paris-Diderot, U1276, Fontenay-aux-Roses, France.,Université Paris-Sud, U1276, Fontenay-aux-Roses, France
| | - Laurent R Gauthier
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM U1276, Fontenay-aux-Roses, France.,Université Paris-Diderot, U1276, Fontenay-aux-Roses, France.,Université Paris-Sud, U1276, Fontenay-aux-Roses, France
| | - Denis Biard
- CEA, Institut de Biologie François Jacob, SEPIA, Team Cellular Engineering and Human Syndromes, Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR8246, Inserm U1130, Sorbonne Université, Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR8246, Inserm U1130, Sorbonne Université, Paris, France
| | - François D Boussin
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM U1276, Fontenay-aux-Roses, France.,Université Paris-Diderot, U1276, Fontenay-aux-Roses, France.,Université Paris-Sud, U1276, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Aulestia FJ, Néant I, Dong J, Haiech J, Kilhoffer MC, Moreau M, Leclerc C. Quiescence status of glioblastoma stem-like cells involves remodelling of Ca 2+ signalling and mitochondrial shape. Sci Rep 2018; 8:9731. [PMID: 29950651 PMCID: PMC6021377 DOI: 10.1038/s41598-018-28157-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
Quiescence is a reversible cell-cycle arrest which allows cancer stem-like cells to evade killing following therapies. Here, we show that proliferating glioblastoma stem-like cells (GSLCs) can be induced and maintained in a quiescent state by lowering the extracellular pH. Through RNAseq analysis we identified Ca2+ signalling genes differentially expressed between proliferating and quiescent GSLCs. Using the bioluminescent Ca2+ reporter EGFP-aequorin we observed that the changes in Ca2+ homeostasis occurring during the switch from proliferation to quiescence are controlled through store-operated channels (SOC) since inhibition of SOC drives proliferating GSLCs to quiescence. We showed that this switch is characterized by an increased capacity of GSLCs’ mitochondria to capture Ca2+ and by a dramatic and reversible change of mitochondrial morphology from a tubular to a donut shape. Our data suggest that the remodelling of the Ca2+ homeostasis and the reshaping of mitochondria might favours quiescent GSLCs’ survival and their aggressiveness in glioblastoma.
Collapse
Affiliation(s)
- Francisco J Aulestia
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062, Toulouse, France
| | - Isabelle Néant
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062, Toulouse, France
| | - Jihu Dong
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000, Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000, Strasbourg, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000, Strasbourg, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062, Toulouse, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062, Toulouse, France.
| |
Collapse
|
16
|
Jeitany M, Bakhos-Douaihy D, Silvestre DC, Pineda JR, Ugolin N, Moussa A, Gauthier LR, Busso D, Junier MP, Chneiweiss H, Chevillard S, Desmaze C, Boussin FD. Opposite effects of GCN5 and PCAF knockdowns on the alternative mechanism of telomere maintenance. Oncotarget 2018; 8:26269-26280. [PMID: 28412741 PMCID: PMC5432255 DOI: 10.18632/oncotarget.15447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF) are two homologous acetyltransferases that are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. Our results suggest that GCN5 is present at telomeres and opposes telomere recombination, in contrast to PCAF that may indirectly favour them in ALT cells.
Collapse
Affiliation(s)
- Maya Jeitany
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - Dalal Bakhos-Douaihy
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - David C Silvestre
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - Jose R Pineda
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - Nicolas Ugolin
- Laboratoire de Cancérologie Expérimentale, iRCM, DSV, CEA, Fontenay-aux-Roses, France
| | - Angela Moussa
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - Laurent R Gauthier
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - Didier Busso
- INSERM UMR967, Fontenay-aux-Roses, France.,CIGEx, IRCM, Fontenay-aux-Roses, France
| | - Marie-Pierre Junier
- CNRS UMR8246 Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France.,Inserm U1130, Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France.,University Pierre and Marie Curie UMCR18, Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246 Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France.,Inserm U1130, Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France.,University Pierre and Marie Curie UMCR18, Neuroscience Paris Seine-IBPS, Team Glial Plasticity, Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, iRCM, DSV, CEA, Fontenay-aux-Roses, France
| | - Chantal Desmaze
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| | - François D Boussin
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Université Paris VII, UMR967, Fontenay-aux-Roses, France.,Université Paris XI, UMR967, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness. Acta Neuropathol 2018; 135:267-283. [PMID: 29149419 PMCID: PMC5773658 DOI: 10.1007/s00401-017-1783-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
Abstract
Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients’ glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients’ tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.
Collapse
|
18
|
Abstract
Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; however, continued telomere erosion is unsustainable and must be mitigated to ensure cancer cell survival and unlimited replication potential. Prostate cancers predominantly maintain telomeres by activating telomerase, but alternative mechanisms of telomere extension can occur in metastatic disease. Telomerase activity and telomere length assessment might be useful in prostate cancer diagnosis and prognosis. Telomere shortening in normal stromal cells has been associated with prostate cancer, whereas variable telomere lengths in prostate cancer cells and telomere shortening in cancer-associated stromal cells correlated with lethal disease. Single-agent telomerase-targeted treatments for solid cancers were ineffective in clinical trials but have not been investigated in prostate cancer and might be useful in combination with established regimens. Telomere-directed strategies have not been explored as extensively. Telomere deprotection strategies have the advantage of being effective in both telomerase-dependent and telomerase-independent cancers. Disruption of androgen receptor function in prostate cancer cells results in telomere dysfunction, indicating telomeres and telomerase as potential therapeutic targets in prostate cancer.
Collapse
|
19
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
20
|
El-Habr EA, Dubois LG, Burel-Vandenbos F, Bogeas A, Lipecka J, Turchi L, Lejeune FX, Coehlo PLC, Yamaki T, Wittmann BM, Fareh M, Mahfoudhi E, Janin M, Narayanan A, Morvan-Dubois G, Schmitt C, Verreault M, Oliver L, Sharif A, Pallud J, Devaux B, Puget S, Korkolopoulou P, Varlet P, Ottolenghi C, Plo I, Moura-Neto V, Virolle T, Chneiweiss H, Junier MP. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol 2017; 133:645-660. [PMID: 28032215 PMCID: PMC5348560 DOI: 10.1007/s00401-016-1659-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten–eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.
Collapse
|
21
|
Xu N, Chen Y, Dean KC, Lu X, Liu X, Wang W, Dean DC, Kaplan HJ, Gao L, Dong F, Liu Y. Sphere-Induced Rejuvenation of Swine and Human Müller Glia Is Primarily Caused by Telomere Elongation. Stem Cells 2017; 35:1579-1591. [PMID: 28152565 DOI: 10.1002/stem.2585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/01/2023]
Abstract
Müller cells are the major supportive and protective glial cells in the retina with important functions in histogenesis and synaptogenesis during development, and in maintenance of mature neurons as they show to secrete various cytokines and manifest potentials of self-renewal and transdifferentiation into retinal neurons following injury in the vertebrate retinas. The swine retina has a visual streak structure similar to the human macular where cone photoreceptors are highly concentrated, thereby can serve as a better model for studying retinal diseases and for formulating cell-based therapeutics than the rodent retinas. Like most differentiated somatic mammalian cells, the isolated swine and human Müller glia become senescent over passages in culture, which restricts their potential application in basic and clinic researches. Here, we demonstrate that the senescence of swine and human Müller cells is caused by telomere attrition upon multiplications in vitro; and the senescent cells can be rejuvenated by sphere suspension culture. We also provide evidence that sphere-induced extension of telomeres in swine and human Müller glia is achieved by alternative lengthening of telomeres or/and by telomerase activation. Stem Cells 2017;35:1579-1591.
Collapse
Affiliation(s)
- Ni Xu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, the Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ling Gao
- Department of Ophthalmology, the Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, China
| | - Fangtian Dong
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Berardinelli F, Coluzzi E, Sgura A, Antoccia A. Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:204-219. [PMID: 28927529 DOI: 10.1016/j.mrrev.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy. In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001). Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.
Collapse
Affiliation(s)
- F Berardinelli
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy.
| | - E Coluzzi
- Dipartimento di Scienze, Università Roma Tre, Rome Italy
| | - A Sgura
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| | - A Antoccia
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| |
Collapse
|
23
|
Al-Mayah AHJ, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA. Exosome-Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation. Radiat Res 2016; 187:98-106. [PMID: 27959588 DOI: 10.1667/rr14201.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.
Collapse
Affiliation(s)
- Ammar H J Al-Mayah
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Scott J Bright
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Debbie A Bowler
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Predrag Slijepcevic
- b Department of Life Sciences, College of Health and Life Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Edwin Goodwin
- c The New Mexico Consortium, Los Alamos, New Mexico 87544
| | - Munira A Kadhim
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
24
|
Smith AW, Parashar B, Wernicke AG. Subventricular zone-associated glioblastoma: A call for translational research to guide clinical decision making. NEUROGENESIS 2016; 3:e1225548. [PMID: 27900341 DOI: 10.1080/23262133.2016.1225548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/21/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma (GBM) is both the most common and the most devastating primary cancer of the central nervous system, with an expected overall survival in most patients of about 14 months. Despite extensive research, outcomes for GBM have been largely unchanged since the introduction of temozolomide in 2005. We believe that in order to achieve a breakthrough in therapeutic management, we must begin to identify subtypes of GBM, and tailor treatment to best target a particular tumor's vulnerabilities. Our group has recently produced an examination of the clinical outcomes of radiation therapy directed at tumors that contact the subventricular zone (SVZ), the 3-5 mm lateral border of the lateral ventricles that contains the largest collection of neural stem cells in the adult brain. We find that SVZ-associated tumors have worse progression free and overall survival than tumors that do not contact the SVZ, and that they exhibit unique recurrence and migration patterns. However, with minimal basic science research into SVZ-associated GBM, it is currently impossible to determine if the clinicobehavioral uniqueness of this group of tumors represents a true disease subtype from a genetic perspective. We believe that further translational research into SVZ-associated GBM is needed to establish a therapeutic profile.
Collapse
Affiliation(s)
- Andrew W Smith
- University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| | - Bhupesh Parashar
- Stitch Radiation Oncology, Weill-Cornell Medical College/New York Presbyterian Hospital , New York, NY, USA
| | - A Gabriella Wernicke
- Stitch Radiation Oncology, Weill-Cornell Medical College/New York Presbyterian Hospital , New York, NY, USA
| |
Collapse
|
25
|
Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:19-35. [PMID: 27543314 DOI: 10.1016/j.mrrev.2016.05.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.
Collapse
Affiliation(s)
- Hélène Erasimus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Matthieu Gobin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Simone Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
26
|
Assad Kahn S, Costa SL, Gholamin S, Nitta RT, Dubois LG, Fève M, Zeniou M, Coelho PLC, El-Habr E, Cadusseau J, Varlet P, Mitra SS, Devaux B, Kilhoffer MC, Cheshier SH, Moura-Neto V, Haiech J, Junier MP, Chneiweiss H. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol Med 2016; 8:511-26. [PMID: 27138566 PMCID: PMC5130115 DOI: 10.15252/emmm.201505421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.
Collapse
Affiliation(s)
- Suzana Assad Kahn
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Silvia Lima Costa
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Sharareh Gholamin
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Ryan T Nitta
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Luiz Gustavo Dubois
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Marie Fève
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Paulo Lucas Cerqueira Coelho
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Elias El-Habr
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Josette Cadusseau
- UMR INSERM 955-Team 10, Faculté des Sciences et Technologies UPEC, Créteil, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France Paris Descartes University, Paris, France
| | - Siddhartha S Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Bertrand Devaux
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Paris Descartes University, Paris, France Department of Neurosurgery, Sainte-Anne Hospital, Paris, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Samuel H Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | | | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Marie-Pierre Junier
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Hervé Chneiweiss
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| |
Collapse
|
27
|
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Med 2016; 46:1213-37. [DOI: 10.1007/s40279-016-0482-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Sishc BJ, Nelson CB, McKenna MJ, Battaglia CLR, Herndon A, Idate R, Liber HL, Bailey SM. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Front Oncol 2015; 5:257. [PMID: 26636039 PMCID: PMC4656829 DOI: 10.3389/fonc.2015.00257] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the radiation response and, as such, have compelling implications not only for accelerated tumor repopulation following radiation therapy but also for carcinogenic potential following low dose exposures as well, including those of relevance to spaceflight-associated galactic cosmic radiations.
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Oncology, Department of Radiation Oncology, University of Texas Southwestern Medical Center Dallas , Dallas, TX , USA ; Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Miles J McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christine L R Battaglia
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Andrea Herndon
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Rupa Idate
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Howard L Liber
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| |
Collapse
|
29
|
Choudhury SR, Cui Y, Milton JR, Li J, Irudayaraj J. Selective increase in subtelomeric DNA methylation: an epigenetic biomarker for malignant glioma. Clin Epigenetics 2015; 7:107. [PMID: 26451167 PMCID: PMC4597615 DOI: 10.1186/s13148-015-0140-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background Subtelomeric regions dynamically change their epigenetic pattern during development and progression of several malignancies and degenerative disorders. However, DNA methylation of human subtelomeres and their correlation to telomere length (TL) remain undetermined in glioma. Results Herein, we report on the selective changes in subtelomeric DNA methylation at the end of five chromosomes (Chr.) (7q, 8q. 18p, 21q, and XpYp) and ascertain their correlation with TL in patients with glioma. Subtelomeric methylation level was invariably higher in glioma patients compared to the control group, irrespective of their age and tumor grade. In particular, a significant increase in methylation was observed at the subtelomeric CpG sites of Chr. 8q, 21q, and XpYp in tissues, obtained from the brain tumor of glioma patients. In contrast, no significant change in methylation was observed at the subtelomere of Chr. 7q and 18p. Selective changes in the subtelomeric methylation level, however, did not show any significant correlation to the global TL. This observed phenomenon was validated in vitro by inducing demethylation in a glioblastoma cell line (SF-767) using 5-azacytidine (AZA) treatment. AZA treatment caused significant changes in the subtelomeric methylation pattern but did not alter the TL, which supports our hypothesis. Conclusions DNA methylation level dramatically increased at the subtelomere of Chr.8q, 21q, and XpYp in malignant glioma, which could be used as an early epigenetic diagnostic biomarker of the disease. Alterations in subtelomeric methylation, however, have no effects on the TL. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Yi Cui
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Jacob R Milton
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906 USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Joseph Irudayaraj
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| |
Collapse
|
30
|
Mendes FA, Coelho Aguiar JM, Kahn SA, Reis AH, Dubois LG, Romão LF, Ferreira LSS, Chneiweiss H, Moura Neto V, Abreu JG. Connective-Tissue Growth Factor (CTGF/CCN2) Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro. PLoS One 2015; 10:e0133689. [PMID: 26241738 PMCID: PMC4524627 DOI: 10.1371/journal.pone.0133689] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/01/2015] [Indexed: 02/06/2023] Open
Abstract
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.
Collapse
Affiliation(s)
- Fabio A. Mendes
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M. Coelho Aguiar
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana A. Kahn
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Alice H. Reis
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | | | - Lais S. S. Ferreira
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hervé Chneiweiss
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | - José G. Abreu
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
31
|
Eid R, Demattei MV, Episkopou H, Augé-Gouillou C, Decottignies A, Grandin N, Charbonneau M. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells. Mol Cell Biol 2015; 35:2818-30. [PMID: 26055325 PMCID: PMC4508314 DOI: 10.1128/mcb.01317-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023] Open
Abstract
Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX.
Collapse
Affiliation(s)
- Rita Eid
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | | - Harikleia Episkopou
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Corinne Augé-Gouillou
- Equipe Associée 6306, Instabilité Génétique et Cancer, Université François-Rabelais de Tours, Tours, France
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Nathalie Grandin
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | |
Collapse
|
32
|
Sayd S, Thirant C, El-Habr EA, Lipecka J, Dubois LG, Bogeas A, Tahiri-Jouti N, Chneiweiss H, Junier MP. Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev Rep 2015; 10:103-13. [PMID: 23955573 DOI: 10.1007/s12015-013-9465-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastomas, the most common form of primary brain tumors, are the fourth cause of death by cancer in adults. Increasing evidences suggest that glioblastoma resistance to existing radio- and chemotherapies rely on glioblastoma stem cells (GSCs). GSCs are endowed with a unique combination of stem-like properties alike to normal neural stem cells (NSCs), and of tumor initiating properties. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Here, we used resveratrol to explore the molecular mechanisms differing between GSCs and NSCs. We observed a dual action of resveratrol on GSCs: resveratrol blocked GSC proliferation up to 150 μM and induced their necrosis at higher doses. On the opposite, resveratrol had no effect on NSC behavior. To determine the mechanisms underlying resveratrol effects, we focused our attention on the family of NAD-dependent deacetylases sirtuins (SIRT). A member of this family, SIRT1, has been repetitively shown to constitute a preferential resveratrol target, at least in normal cells. Western blot analysis showed that SIRT1 and SIRT3 were expressed by both GSCs and NSCs whereas SIRT2 expression was restricted to GSCs. Pharmacological blockade of SIRT2 activity or down-regulation of SIRT2 expression with siRNAs counteracted the inhibitory effect of resveratrol on cell proliferation. On the contrary, inhibition of SIRT2 activity or expression did not counteract GSC necrosis observed in presence of high doses of resveratrol. Our results highlight SIRT2 as a novel target for altering GSC properties.
Collapse
Affiliation(s)
- Salwa Sayd
- Team Glial Plasticity, U894 Inserm, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Borodovsky A, Meeker AK, Kirkness EF, Zhao Q, Eberhart CG, Gallia GL, Riggins GJ. A model of a patient-derived IDH1 mutant anaplastic astrocytoma with alternative lengthening of telomeres. J Neurooncol 2014; 121:479-87. [PMID: 25471051 DOI: 10.1007/s11060-014-1672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative lengthening of telomeres. The second subgroup with oligodendrocytic morphology has frequent mutations in CIC or FUBP1, and is linked to co-deletion of the 1p/19q arms. These mutations reflect the development of two distinct molecular pathways representing the majority of IDH1 mutant gliomas. Unfortunately, due to the scarcity of endogenously derived IDH1 mutant models, there is a lack of accurate models to study mechanism and develop new therapy. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma in vivo model with concurrent mutations in TP53, CDKN2A and ATRX. The model has a similar phenotype and histopathology as the original patient tumor, expresses the IDH1 (R132H) mutant protein and exhibits an alternative lengthening of telomeres phenotype. The JHH-273 model is characteristic of anaplastic astrocytoma and represents a valuable tool for investigating the pathogenesis of this distinct molecular subset of gliomas and for preclinical testing of compounds targeting IDH1 mutations or alternative lengthening of telomeres.
Collapse
Affiliation(s)
- Alexandra Borodovsky
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD, 21231, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Jeitany M, Pineda JR, Liu Q, Porreca RM, Hoffschir F, Desmaze C, Silvestre DC, Mailliet P, Junier MP, Londoño-Vallejo A, Ségal-Bendirdjian E, Chneiweiss H, Boussin FD. A preclinical mouse model of glioma with an alternative mechanism of telomere maintenance (ALT). Int J Cancer 2014; 136:1546-58. [PMID: 25175359 PMCID: PMC4303977 DOI: 10.1002/ijc.29171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is the most aggressive primary tumor of the central nervous system. Glioma stem cells (GSCs), a small population of tumor cells with stem-like properties, are supposedly responsible for glioblastoma multiforme relapse after current therapies. In approximately thirty percent of glioblastoma multiforme tumors, telomeres are not maintained by telomerase but through an alternative mechanism, termed alternative lengthening of telomere (ALT), suggesting potential interest in developing specific therapeutic strategies. However, no preclinical model of ALT glioma was available until the isolation of TG20 cells from a human ALT glioma. Herein, we show that TG20 cells exhibit a high level of telomeric recombination but a stable karyotype, indicating that their telomeres retain their protective function against chromosomal instability. TG20 cells possess all of the characteristic features of GSCs: the expression of neural stem cell markers, the generation of intracerebral tumors in NOD-SCID-IL2Rγ (NSG) mice as well as in nude mice, and the ability to sustain serial intracerebral transplantations without expressing telomerase, demonstrating the stability of the ALT phenotype in vivo. Furthermore, we also demonstrate that 360B, a G-quadruplex ligand of the pyridine derivative series that impairs telomere replication and mitotic progression in cancer cells, prevents the development of TG20 tumors. Together, our results show that intracerebral grafts of TG20 cells in immunodeficient mice constitute an efficient preclinical model of ALT glioblastoma multiforme and that G-quadruplex ligands are a potential therapy for this specific type of tumor.
Collapse
Affiliation(s)
- Maya Jeitany
- Laboratoire de Radiopathologie, CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 route du Panorama, 92265, Fontenay-aux-Roses, France; INSERM UMR967, 18 route du Panorama, 92265, Fontenay-aux-Roses, France; Université Paris VII, UMR967, 18 route du Panorama, 92265, Fontenay-aux-Roses, France; Université Paris XI, UMR967, 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014; 2014:694-708. [PMID: 24987146 DOI: 10.1101/pdb.top073585] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery of the "nude" mouse more than 40 years ago, investigators have attempted to model human tumor growth in immunodeficient mice. Here, we summarize how the field has advanced over the ensuing years owing to improvements in the murine recipients of human tumors. These improvements include the discovery of the scid mutation and development of targeted mutations in the recombination-activating genes 1 and 2 (Rag1(null), Rag2(null)) that severely cripple the adaptive immune response of the murine host. More recently, mice deficient in adaptive immunity have been crossed with mice bearing targeted mutations designed to weaken the innate immune system, ultimately leading to the development of immunodeficient mice bearing a targeted mutation in the gene encoding the interleukin 2 (IL2) receptor common γ chain (IL2rg(null), also known in humans as cytokine receptor common subunit γ). The IL2rg(null) mutation has been used to develop several immunodeficient strains of mice, including the NOD-scid IL2rg(null) (NSG) strain. Using NSG mice as human xenograft recipients, it is now possible to grow almost all types of primary human tumors in vivo, including most solid tumors and hematological malignancies that maintain characteristics of the primary tumor in the patient. Programs to optimize patient-specific therapy using patient-derived xenograft tumor growth in NSG mice have been established at several institutions, including The Jackson Laboratory. Moreover, NSG mice can be engrafted with functional human immune systems, permitting for the first time the potential to study primary human tumors in vivo in the presence of a human immune system.
Collapse
Affiliation(s)
| | | | - Fumihiko Ishikawa
- The Laboratory for Human Disease Models, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | - Dale L Greiner
- University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
36
|
Bai Y, Lathia JD, Zhang P, Flavahan W, Rich JN, Mattson MP. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia 2014; 62:1687-98. [PMID: 24909307 DOI: 10.1002/glia.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022]
Abstract
Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
37
|
Telomerase as a "stemness" enzyme. SCIENCE CHINA-LIFE SCIENCES 2014; 57:564-70. [PMID: 24829107 DOI: 10.1007/s11427-014-4666-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/06/2014] [Indexed: 12/20/2022]
Abstract
Pluripotent or multipotent stem cells are involved in development and tissue homeostasis; they have the ability to self-renew and differentiate into various types of functional cells. To maintain these properties, stem cells must undergo sustained or unlimited proliferation that requires the stabilization of telomeres, which are essential for chromosome end protection. Telomerase, an RNA-dependent DNA polymerase, synthesizes telomeric DNA. Through the lengthening of telomeres the lifespans of cells are extended, or indefinite proliferation is conferred; this is intimately associated with stem cell phenotype. This review highlights our current understanding of telomerase as a "stemness" enzyme and discusses the underlying implications.
Collapse
|
38
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
39
|
Thirant C, Gavard J, Junier MP, Chneiweiss H. Critical multiple angiogenic factors secreted by glioblastoma stem-like cells underline the need for combinatorial anti-angiogenic therapeutic strategies. Proteomics Clin Appl 2014; 7:79-90. [PMID: 23229792 DOI: 10.1002/prca.201200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/31/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Glioblastomas are the most frequent adult primary brain tumors that still remain fatal despite major clinical efforts. As in other solid tumors, populations of glioblastoma stem-like cells (GSCs) endowed with tumor initiating and therapeutic resistance properties have been identified. Glioblastomas are highly vascularized tumors resulting in a rich dialog between GSCs and endothelial cells. In one direction, endothelial cells and their secreted proteins are able to sustain GSC properties while, in turn, GSCs can promote neoangiogenesis, modulate endothelial cell functions and may even transdifferentiate into endothelial cells. Accordingly, targeting tumor vasculature seems a promising issue despite incomplete and transient results obtained from anti-vascular endothelial growth factor therapeutic trials. Recent findings of novel GSC-secreted molecules with pro-angiogenic properties (Semaphorin 3A, hepatoma-derived growth factor) open the path to the design of a concerted attack of glioblastoma vasculature that could overcome the development of resistance to single-targeted therapies while keeping away the toxicity of the treatments.
Collapse
Affiliation(s)
- Cécile Thirant
- Leukemia and Stem Cell Biology Laboratory, Department of Hematological Medicine, Rayne Institute, King's College London, London, UK
| | | | | | | |
Collapse
|
40
|
Dorris K, Sobo M, Onar-Thomas A, Panditharatna E, Stevenson CB, Gardner SL, Dewire MD, Pierson CR, Olshefski R, Rempel SA, Goldman S, Miles L, Fouladi M, Drissi R. Prognostic significance of telomere maintenance mechanisms in pediatric high-grade gliomas. J Neurooncol 2014; 117:67-76. [PMID: 24477622 DOI: 10.1007/s11060-014-1374-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023]
Abstract
Children with high-grade glioma, including diffuse intrinsic pontine glioma (DIPG), have a poor prognosis despite multimodal therapy. Identifying novel therapeutic targets is critical to improve their outcome. We evaluated prognostic roles of telomere maintenance mechanisms in children with HGG, including DIPG. A multi-institutional retrospective study was conducted involving 50 flash-frozen HGG (35 non-brainstem; 15 DIPG) tumors from 45 children (30 non-brainstem; 15 DIPG). Telomerase activity, expression of hTERT mRNA (encoding telomerase catalytic component) and TERC (telomerase RNA template) and alternative lengthening of telomeres (ALT) mechanism were assayed. Cox Proportional Hazard regression analyses assessed association of clinical and pathological variables, TERC and hTERT levels, telomerase activity, and ALT use with progression-free or overall survival (OS). High TERC and hTERT expression was detected in 13/28 non-brainstem HGG samples as compared to non-neoplastic controls. High TERC and hTERT expression was identified in 13/15 and 11/15 DIPG samples, respectively, compared to controls. Evidence of ALT was noted in 3/11 DIPG and 10/19 non-brainstem HGG specimens. ALT and telomerase use were identified in 4/19 non-brainstem HGG and 2/11 DIPG specimens. In multivariable analyses, increased TERC and hTERT levels were associated with worse OS in patients with non-brainstem HGG, after controlling for tumor grade or resection extent. Children with HGG and DIPG, have increased hTERT and TERC expression. In children with non-brainstem HGG, increased TERC and hTERT expression levels are associated with a worse OS, making telomerase a promising potential therapeutic target in pediatric HGG.
Collapse
Affiliation(s)
- Kathleen Dorris
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, MLC 7013, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis 2014; 5:e1023. [PMID: 24457967 PMCID: PMC4040690 DOI: 10.1038/cddis.2013.560] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target.
Collapse
Affiliation(s)
- E Gangoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - C Thirant
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - H Chneiweiss
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - J M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - A Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
42
|
Förstera B, a Dzaye OD, Winkelmann A, Semtner M, Benedetti B, Markovic DS, Synowitz M, Wend P, Fähling M, Junier MP, Glass R, Kettenmann H, Meier JC. Intracellular glycine receptor function facilitates glioma formation in vivo. J Cell Sci 2014; 127:3687-98. [DOI: 10.1242/jcs.146662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors accumulate the neurotransmitter glycine, we studied expression and function of glycine receptors (GlyR) in glioma cells. Human brain tumor biopsies selectively expressed GlyR subunits with nuclear import signal (NLS, α1 and α3). The mouse glioma cell line GL261 expressed GlyR α1, and knock-down of α1 protein expression impaired self-renewal capacity and tumorigenicity of GL261 glioma cells as evidenced by the neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore show that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued self-renewal capacity of GlyR α1 knock-down cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as novel potential targets for brain tumor therapies.
Collapse
|
43
|
Heaphy CM, Schreck KC, Raabe E, Mao XG, An P, Chu Q, Poh W, Jiao Y, Rodriguez FJ, Odia Y, Meeker AK, Eberhart CG. A glioblastoma neurosphere line with alternative lengthening of telomeres. Acta Neuropathol 2013; 126:607-8. [PMID: 24022427 DOI: 10.1007/s00401-013-1174-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/01/2022]
|
44
|
Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, Moura-Neto V, Borges HL. Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis 2013; 4:e767. [PMID: 23949216 PMCID: PMC3763445 DOI: 10.1038/cddis.2013.283] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Glioblastomas (GBMs) are devastating tumors of the central nervous system, with a poor prognosis of 1-year survival. This results from a high resistance of GBM tumor cells to current therapeutic options, including etoposide (VP-16). Understanding resistance mechanisms may thus open new therapeutic avenues. VP-16 is a topoisomerase inhibitor that causes replication fork stalling and, ultimately, the formation of DNA double-strand breaks and apoptotic cell death. Autophagy has been identified as a VP-16 treatment resistance mechanism in tumor cells. Retinoblastoma protein (RB) is a classical tumor suppressor owing to its role in G1/S cell cycle checkpoint, but recent data have shown RB participation in many other cellular functions, including, counterintuitively, negative regulation of apoptosis. As GBMs usually display an amplification of the EGFR signaling involving the RB protein pathway, we questioned whether RB might be involved in mechanisms of resistance of GBM cells to VP-16. We observed that RB silencing increased VP-16-induced DNA double-strand breaks and p53 activation. Moreover, RB knockdown increased VP-16-induced apoptosis in GBM cell lines and cancer stem cells, the latter being now recognized essential to resistance to treatments and recurrence. We also showed that VP-16 treatment induced autophagy, and that RB silencing impaired this process by inhibiting the fusion of autophagosomes with lysosomes. Taken together, our data suggest that RB silencing causes a blockage on the VP-16-induced autophagic flux, which is followed by apoptosis in GBM cell lines and in cancer stem cells. Therefore, we show here, for the first time, that RB represents a molecular link between autophagy and apoptosis, and a resistance marker in GBM, a discovery with potential importance for anticancer treatment.
Collapse
Affiliation(s)
- D Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S A Kahn
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T A Cornélio
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Furtado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - L Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Chneiweiss
- Glial Plasticity Laboratory, Center for Psychiatry and Neuroscience, U894 Inserm, Paris Descartes University, Paris, France
| | - V Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
46
|
Lundberg G, Jin Y, Sehic D, Øra I, Versteeg R, Gisselsson D. Intratumour diversity of chromosome copy numbers in neuroblastoma mediated by on-going chromosome loss from a polyploid state. PLoS One 2013; 8:e59268. [PMID: 23555645 PMCID: PMC3605453 DOI: 10.1371/journal.pone.0059268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
Neuroblastomas (NBs) are tumours of the sympathetic nervous system accounting for 8–10% of paediatric cancers. NBs exhibit extensive intertumour genetic heterogeneity, but their extent of intratumour genetic diversity has remained unexplored. We aimed to assess intratumour genetic variation in NBs with a focus on whole chromosome changes and their underlying mechanism. Allelic ratios obtained by SNP-array data from 30 aneuploid primary NBs and NB cell lines were used to quantify the size of clones harbouring specific genomic imbalances. In 13 cases, this was supplemented by fluorescence in situ hybridisation to assess copy number diversity in detail. Computer simulations of different mitotic segregation errors, single cell cloning, analysis of mitotic figures, and time lapse imaging of dividing NB cells were used to infer the most likely mechanism behind intratumour variation in chromosome number. Combined SNP array and FISH analyses showed that all cases exhibited higher inter-cellular copy number variation than non-neoplastic control tissue, with up to 75% of tumour cells showing non-modal chromosome copy numbers. Comparisons of copy number profiles, resulting from simulations of different segregation errors to genomic profiles of 120 NBs indicated that loss of chromosomes from a tetraploid state was more likely than other mechanisms to explain numerical aberrations in NB. This was supported by a high frequency of lagging chromosomes at anaphase and polyploidisation events in growing NB cells. The dynamic nature of numerical aberrations was corroborated further by detecting substantial copy number diversity in cell populations grown from single NB cells. We conclude that aneuploid NBs typically show extensive intratumour chromosome copy number diversity, and that this phenomenon is most likely explained by continuous loss of chromosomes from a polyploid state.
Collapse
Affiliation(s)
- Gisela Lundberg
- Department of Clinical Genetics, Lund University, Skåne University and Regional Laboratories, Lund, Sweden
| | - Yuesheng Jin
- Department of Clinical Genetics, Lund University, Skåne University and Regional Laboratories, Lund, Sweden
| | - Daniel Sehic
- Department of Clinical Genetics, Lund University, Skåne University and Regional Laboratories, Lund, Sweden
| | - Ingrid Øra
- Department of Paediatric Oncology and Haematology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David Gisselsson
- Department of Clinical Genetics, Lund University, Skåne University and Regional Laboratories, Lund, Sweden
- Department of Pathology, Skåne University and Regional Laboratories, Lund, Sweden
- * E-mail:
| |
Collapse
|
47
|
Lötsch D, Ghanim B, Laaber M, Wurm G, Weis S, Lenz S, Webersinke G, Pichler J, Berger W, Spiegl-Kreinecker S. Prognostic significance of telomerase-associated parameters in glioblastoma: effect of patient age. Neuro Oncol 2013; 15:423-32. [PMID: 23393205 DOI: 10.1093/neuonc/nos329] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a heterogeneous, highly aggressive primary brain tumor with strongly variable patient survival. Because reliable prognostic biomarkers are lacking, we investigated the relation between telomerase-associated parameters and the disease course. METHODS Telomerase-associated parameters were determined in 100 GBM tissues and associated with clinical characteristics and overall survival. Expressions of telomere length, telomerase activity (TA), and human telomerase reverse transcriptase (hTERT) were analyzed by quantitative PCR, telomeric repeat amplification protocol assay, and reverse transcriptase-PCR, respectively. Mutation status of isocitrate dehydrogenase (IDH)1 was determined by direct sequencing, and O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation by methylation-specific PCR. RESULTS Of 100 GBM tissues, 61 were positive for both hTERT mRNA and TA, with a highly significant correlation between both parameters (linear regression, P < .0001). Telomere length determination revealed a significant difference between the hTERT/TA-positive and -negative subgroups, with markedly longer telomeres in the hTERT/TA-negative cohort (unpaired Student's t-test, P = .0001). Accordingly, significantly shorter telomeres were detected in GBM tissues derived from older patients (>60 y at diagnosis, P < .0001). While no association of telomere parameters with MGMT promoter status was found, all tumors with IDH1 mutation (6/100) were negative for both hTERT expression and TA and harbored significantly longer telomeres. Patients with tumors lacking hTERT expression/TA showed a significant survival benefit (Kaplan-Meier test, both P < .01), which, however, was based exclusively on the younger patient subgroup (≤60 y, both P < .005; >60 y, both ns). CONCLUSIONS Telomerase activation is not an independent prognostic parameter in GBM but predicts aggressive tumor behavior solely in a younger patient cohort.
Collapse
Affiliation(s)
- Daniela Lötsch
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hung NA, Hsia H, Royds JA, Slatter TL. Telomere Maintenance Mechanisms: Prognostic and Therapeutic Implications for the Pathologist and Oncologist. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpathology.2013.31003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, Varlet P, Devaux B, Soncin F, Gavard J, Junier MP, Chneiweiss H. Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012; 30:845-53. [PMID: 22331796 DOI: 10.1002/stem.1062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Presence in glioblastomas of cancer cells with normal neural stem cell (NSC) properties, tumor initiating capacity, and resistance to current therapies suggests that glioblastoma stem-like cells (GSCs) play central roles in glioblastoma development. We cultured human GSCs endowed with all features of tumor stem cells, including tumor initiation after xenograft and radio-chemoresistance. We established proteomes from four GSC cultures and their corresponding whole tumor tissues (TTs) and from human NSCs. Two-dimensional difference gel electrophoresis and tandem mass spectrometry revealed a twofold increase of hepatoma-derived growth factor (HDGF) in GSCs as compared to TTs and NSCs. Western blot analysis confirmed HDGF overexpression in GSCs as well as its presence in GSC-conditioned medium, while, in contrast, no HDGF was detected in NSC secretome. At the functional level, GSC-conditioned medium induced migration of human cerebral endothelial cells that can be blocked by anti-HDGF antibodies. In vivo, GSC-conditioned medium induced neoangiogenesis, whereas HDGF-targeting siRNAs abrogated this effect. Altogether, our results identify a novel candidate, by which GSCs can support neoangiogenesis, a high-grade glioma hallmark. Our strategy illustrates the usefulness of comparative proteomic analysis to decipher molecular pathways, which underlie GSC properties.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U894, Psychiatry and Neuroscience Center, Glial Plasticity Team, Cochin Institute, Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen W, Wang GM, Guo JM, Sun LA, Wang H. NGF/γ-IFN inhibits androgen-independent prostate cancer and reverses androgen receptor function through downregulation of FGFR2 and decrease in cancer stem cells. Stem Cells Dev 2012; 21:3372-80. [PMID: 22731611 DOI: 10.1089/scd.2012.0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Androgen-independent prostate cancer (AIPC) is difficult to treat. Present study is to explore the inhibitory effect of a cytokine environment on AIPC and its mechanism. We utilized nerve growth factor (NGF)/γ-interferon (γ-IFN) to change the cytokine environment. Animal models and 2 androgen receptor (AR)-negative prostate cancer cell lines were used to evaluate the effect of NGF/γ-IFN. Flow cytometry, immunocytochemistry, western blotting, Tunel assay, colony formation efficiency, gene microarray, and in vivo bioluminescence were used to discern the mechanisms within NGF/γ-IFN that effect the environment. In vitro, NGF/γ-IFN effectively inhibited the proliferation of AIPC cell lines and promoted the apoptosis of the cancer cells. In vivo, NGF/γ-IFN suppressed the growth and metastasis of a tumor mass that arose from the AIPC cell line. After NGF/γ-IFN treatment, the AR-negative cell lines re-expressed AR and were then able to respond to the androgen. Contrary to expectations, the proliferation of cells was inhibited after dihydrotestosterone was added, and the results indicated that NGF/γ-IFN decreased the proportion of cancer stem cells. NGF/γ-IFN worked mainly through the downregulation of fibroblast growth factor receptor 2.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|