1
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Toriumi K, Onodera Y, Takehara T, Mori T, Hasei J, Shigi K, Iwawaki N, Ozaki T, Akagi M, Nakanishi M, Teramura T. LRRC15 expression indicates high level of stemness regulated by TWIST1 in mesenchymal stem cells. iScience 2023; 26:106946. [PMID: 37534184 PMCID: PMC10391581 DOI: 10.1016/j.isci.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/09/2023] [Accepted: 05/19/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are used as a major source for cell therapy, and its application is expanding in various diseases. On the other hand, reliable method to evaluate quality and therapeutic properties of MSC is limited. In this study, we focused on TWIST1 that is a transcription factor regulating stemness of MSCs and found that the transmembrane protein LRRC15 tightly correlated with the expression of TWIST1 and useful to expect TWIST1-regulated stemness of MSCs. The LRRC15-positive MSC populations in human and mouse bone marrow tissues highly expressed stemness-associated transcription factors and therapeutic cytokines, and showed better therapeutic effect in bleomycin-induced pulmonary fibrosis model mice. This study provides evidence for the important role of TWIST1 in the MSC stemness, and for the utility of the LRRC15 protein as a marker to estimate stem cell quality in MSCs before cell transplantation.
Collapse
Affiliation(s)
- Kensuke Toriumi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Tatsufumi Mori
- Life Science Institute, Kindai University, Osaka-sayama, Osaka, Japan
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Faculty of Medicine, Okayama, Okayama, Japan
| | - Kanae Shigi
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Natsumi Iwawaki
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Faculty of Medicine, Okayama, Okayama, Japan
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | | | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| |
Collapse
|
3
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
4
|
Ferreira‐Baptista C, Queirós A, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites. J Anat 2023; 242:277-288. [PMID: 36056547 PMCID: PMC9877480 DOI: 10.1111/joa.13758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells-based regenerative orthopedic therapies have been used in cats as a promising and innovative therapeutic approach to enhance the repair of bone defects. Adipose tissue-derived stromal cells (ADSCs) can be obtained from two main sites-subcutaneous and visceral-with established differences regarding structure, composition, cell content, and functionality. However, in cats, to the best of the authors' knowledge, no studies have been conducted to compare the functional activity of the ADSCs isolated from the two sites, and the impact of these differences on the induced osteogenic potential. Additionally, retinoic acid has been recently regarded as a new osteogenic inducer within cells of distinct species, with undisclosed functionality on cat-derived cell populations. Thus, the present study aimed to evaluate the functional activity of ADSCs isolated from the subcutaneous and visceral adipose sites (SCAT and VAT, respectively) of the cat, as well as the effects of two osteogenic-inducing conditions-the classic dexamethasone, β-glycerophosphate and ascorbic acid-supplemented media (Dex + β + AAM), and Retinoic Acid-supplemented media (RAM). The adipose tissue of subcutaneous and visceral origin was isolated, characterized, and ADSCs were isolated and grown in the presence of the two osteogenic-inducing conditions, and characterized in terms of proliferation, metabolic activity, morphology, and osteogenic activity. Our results demonstrated a distinct biological profile of the two adipose tissue sites regarding cell size, vascularization, and morphology. Further, osteogenic-induced ADSCs from both sites presented an increased expression of alkaline phosphatase activity (ALP) and cytochemical staining, as compared with control. Overall, RAM induced higher levels of ALP activity than Dex + β + AAM, supporting an increased osteogenic activation. Additionally, VAT was the tissue with the best osteogenic potential, showing higher levels of ALP expression, particularly with RAM. In conclusion, different characteristics were found between the two adipose tissue sites-SCAT and VAT, which probably reflect the differences found in the functionality of isolated ADSCs from both tissues. Furthermore, for cat, VAT shows a greater osteogenic-inductive capacity than SCAT, particularly with RAM, which can be of therapeutic relevance for regenerative medicine applications.
Collapse
Affiliation(s)
- Carla Ferreira‐Baptista
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | | | - Rita Ferreira
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | - Maria Helena Fernandes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Pedro Sousa Gomes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- CECAV—Animal and Veterinary Research Centre UTADUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)Vila RealPortugal
| |
Collapse
|
5
|
Khoramgah MS, Ghanbarian H, Ranjbari J, Ebrahimi N, Tabatabaei Mirakabad FS, Ahmady Roozbahany N, Abbaszadeh HA, Hosseinzadeh S. Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. BIOIMPACTS : BI 2023; 13:31-42. [PMID: 36817003 PMCID: PMC9923815 DOI: 10.34172/bi.2021.23711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Treatment of critical-sized bone defects is challenging. Tissue engineering as a state-of-the-art method has been concerned with treating these non-self-healing bone defects. Here, we studied the potentials of new three-dimensional nanofibrous scaffolds (3DNS) with and without human adipose mesenchymal stem cells (ADSCs) for reconstructing rat critical-sized calvarial defects (CSCD). Methods: Scaffolds were made from 1- polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA) (PTFE/ PVA group), and 2- PTFE, PVA, and graphene oxide (GO) nanoparticle (PTFE/ PVA/GO group) and seeded by ADSCs and incubated in osteogenic media (OM). The expression of key osteogenic proteins including Runt-related transcription factor 2 (Runx2), collagen type Iα (COL Iα), osteocalcin (OCN), and osteonectin (ON) at days 14 and 21 of culture were evaluated by western blot and immunocytochemistry methods. Next, 40 selected rats were assigned to five groups (n=8) to create CSCD which will be filled by scaffolds or cell-containing scaffolds. The groups were denominated as the following order: Control (empty defects), PTFE/PVA (PTFE/PVA scaffolds implant), PTFE/PVA/GO (PTFE/PVA/GO scaffolds implant), PTFE/PVA/Cell group (PTFE/PVA scaffolds containing ADSCs implant), and PTFE/PVA/GO/Cell group (PTFE/PVA/GO scaffolds containing ADSCs implant). Six and 12 weeks after implantation, the animals were sacrificed and bone regeneration was evaluated using computerized tomography (CT), and hematoxylin-eosin (H&E) staining. Results: Based on the in-vitro study, expression of bone-related proteins in ADSCs seeded on PTFE/PVA/GO scaffolds were significantly higher than PTFE/PVA scaffolds and TCPS (P<0.05). Based on the in-vivo study, bone regeneration in CSCD were filled with PTFE/PVA/GO scaffolds containing ADSCs were significantly higher than PTFE/PVA scaffolds containing ADSCs (P<0.05). CSCD filled with cell-seeded scaffolds showed higher bone regeneration in comparison with CSCD filled with scaffolds only (P<0.05). Conclusion: The data provided evidence showing new freeze-dried nanofibrous scaffolds formed from hydrophobic (PTFE) and hydrophilic (PVA) polymers with and without GO provide a suitable environment for ADSCs due to the expression of bone-related proteins. ADSCs and GO in the implanted scaffolds had a distinct effect on the bone regeneration process in this in-vivo study.
Collapse
Affiliation(s)
- Maryam Sadat Khoramgah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilufar Ebrahimi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biomedical Engineering, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sadat Tabatabaei Mirakabad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Private Practice, Bradford ON, Canada
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| |
Collapse
|
6
|
Nie K, Zhou S, Li H, Tian J, Shen W, Huang W. Advanced silk materials for musculoskeletal tissue regeneration. Front Bioeng Biotechnol 2023; 11:1199507. [PMID: 37200844 PMCID: PMC10185897 DOI: 10.3389/fbioe.2023.1199507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Kexin Nie
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Sicheng Zhou
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hu Li
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tian
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Huang
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Wenwen Huang,
| |
Collapse
|
7
|
Performance of Polydioxanone-Based Membrane in Association with 3D-Printed Bioceramic Scaffolds in Bone Regeneration. Polymers (Basel) 2022; 15:polym15010031. [PMID: 36616379 PMCID: PMC9823904 DOI: 10.3390/polym15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) scaffolds or hydroxyapatite (HA) scaffolds associated with polydioxanone (PDO) membrane (Plenum® Guide) for guided bone regeneration in rats. Fifty-four rats were divided into three groups (n = 18 animals): autogenous bone + PDO membrane (Auto/PG); 3D-printed β-TCP + PDO membrane (TCP/PG); and 3D-printed HA + PDO membrane (HA/PG). A surgical defect in the parietal bone was made and filled with the respective scaffolds and PDO membrane. The animals were euthanized 7, 30, and 60 days after the surgical procedure for micro-CT, histomorphometric, and immunolabeling analyses. Micro-CT showed an increase in trabecular thickness and a decrease in trabecular separation, even with similar bone volume percentages between TCP/PG and HA/PG vs. Auto/PG. Histometric analysis showed increased bone formation at 30 days in the groups compared to 7 days postoperatively. Immunolabeling analysis showed an increase in proteins related to bone formation at 30 days, and both groups showed a similar immunolabeling pattern. This study concludes that 3D-printed scaffolds associated with PDO membrane (Plenum® Guide) present similar results to autogenous bone for bone regeneration.
Collapse
|
8
|
Yang X, Dong J, Hao Y, Qi Y, Liang J, Yan L, Wang W. Naringin Alleviates H 2O 2-Inhibited Osteogenic Differentiation of Human Adipose-Derived Stromal Cells via Wnt/ β-Catenin Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3126094. [PMID: 35529937 PMCID: PMC9076301 DOI: 10.1155/2022/3126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is an age-related systemic bone disease that places a heavy burden on patients and society. In this study, we aimed to investigate the effects of naringin (NAR) on the osteogenic differentiation of human adipose-derived stromal cells (ADSCs). The results demonstrated that NAR pretreatment effectively abated H2O2-induced cell death and ROS accumulation in ADSCs undergoing osteogenic differentiation (ADSCs-OD). In addition, we also observed that the impaired extracellular matrix mineralization and ALP activity in H2O2-stimulated ADSCs-OD were notably rescued by NAR pretreatment. Moreover, the effects of H2O2 exposure on Wnt/β-catenin signaling in ADSCs-OD were largely reversed by NAR pretreatment. Collectively, our findings indicated that NAR could protect ADSCs-OD against H2O2-inhibited osteogenic differentiation.
Collapse
Affiliation(s)
- Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jianjiang Dong
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yankun Hao
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yucheng Qi
- Basic Medical College, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jun Liang
- Stem Cell Institute, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wenting Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
9
|
Cui Y, Hu X, Zhang C, Wang K. The genetic polymorphisms of key genes in WNT pathway (LRP5 and AXIN1) was associated with osteoporosis susceptibility in Chinese Han population. Endocrine 2022; 75:560-574. [PMID: 34590211 DOI: 10.1007/s12020-021-02866-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genetic factors play a critical role in the pathogenesis of osteoporosis. The imbalance of WNT/β-catenin will cause the occurrence of osteoporosis. LRP5 and AXIN1 play an important role in the classical Wnt/β-catenin signaling pathway. Our study was aimed to determine the association between five candidate single nucleotide polymorphisms (SNPs) of LRP5 or AXIN1 and osteoporosis susceptibility in Chinese Han population. METHODS A total of 599 osteoporosis patients and 599 healthy individuals were recruited for this case-control study. Agena MassARRAY was used to genotype SNPs. The association between SNPs and osteoporosis susceptibility in different genetic models was analyzed by PLINK software. We used false-positive report probability (FPRP) analysis to detect whether the positive results were just chance or noteworthy observations. Multifactor dimension reduction (MDR) was used to analyze the interaction of SNP-SNP in the osteoporosis risk. Finally, haplotype analysis was performed by plink1.07 and Haploview software. RESULTS We found that LRP5 rs11228240, AXIN1 rs2301522, and rs9921222 were significantly associated with the osteoporosis susceptibility. The results of subgroup analysis showed that LRP5 rs11228240 (protective factor) and AXIN1 rs2301522 (risk factor) were associated with the susceptibility of osteoporosis among participants who were age >60 years, female or BMI ≤ 24; AXIN1 rs9921222 significantly increased the risk of osteoporosis among participants with BMI ≤ 24. The genotype Ars2301522Crs9921222 could increase the susceptibility of osteoporosis (p = 0.026). The rs11228219LPR5, rs11228240 LPR5, rs2301522AXIN1, and rs9921222AXIN1 four-site model was the best model for predicting the osteoporosis risk (test accuracy = 0.541; CVC = 10/10). CONCLUSIONS The LRP5-rs11228240, AXIN1-rs2301522, and AXIN1- rs9921222 were associated with osteoporosis susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Yongsheng Cui
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Department of Orthopedics, Ankang Central Hospital, Ankang, 725000, Shaanxi, China
| | - Xinglv Hu
- Department of Orthopedics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Chen Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
10
|
Dradjat RS, Sananta P, Rosandi RD, Siahaan LD. Effect of Stromal Vascular Fraction on Fracture Healing with Bone Defects by Examination of Bone Morphogenetic Protein-2 Biomarkers in Murine Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Fractures and segmental bone defects are a significant cause of morbidity and a source of a high economic burden in healthcare. A severe bone defect (3 mm in murine model) is a devastating condition, which the bone cannot heal naturally despite surgical stabilization and usually requires further surgical intervention. The stromal vascular fraction (SVF) contains a heterogeneous collection of cells and several components, primarily: MSCs, HSCs, Treg cells, pericytic cells, AST cells, extracellular matrix, and complex microvascular beds (fibroblasts, white blood cells, dendritic cells, and intra-adventitial smooth muscular-like cells). Bone morphogenetic protein (BMP) is widely known for their important role in bone formation during mammalian development and confers a multifunctional role in the body, which has potential for therapeutic use. Studies have shown that BMPs play a role in the healing of large size bone defects.
AIM: In this study, researchers aim to determine the effect of administering SVF from adipose tissue on the healing process of bone defects assessed based on the level biomarker of BMP-2.
MATERIALS AND METHODS: This was an animal study involving 12 Wistar strain Rattus norvegivus. They were divided into three groups: Negative group (normal rats), positive group (rats with bone defect without SVF application), and SVF group (rats with bone defect with SVF application). After 30 days, the rats were sacrificed; the biomarkers that were evaluated are BMP-2. This biomarker was quantified using ELISA.
RESULTS: BMP-2 biomarker expressions were higher in the SVF application group than in the group without SVF. All comparisons of the SVF group and positive control group showed significant differences (p = 0.026).
CONCLUSION: SVF application could aid the healing process in a murine model with bone defect marked by the increased level of BMP-2 as a bone formation marker.
Collapse
|
11
|
Kim S, Kwon OJ, Lee J, Kim J, Kim TH, Kim K. A Brief Overview of Recent Engineering Approaches for Intervertebral Disc Regeneration Using Adipose Derived Mesenchymal Stem Cell Administration. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-019-0346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Fujisaki S, Kajiya H, Yanagi T, Maeshiba M, Kakura K, Kido H, Ohno J. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells. Cytotherapy 2021; 23:608-616. [PMID: 33863640 DOI: 10.1016/j.jcyt.2021.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.
Collapse
Affiliation(s)
- Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Tsukasa Yanagi
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
13
|
Saska S, Pilatti L, Silva ESDS, Nagasawa MA, Câmara D, Lizier N, Finger E, Dyszkiewicz Konwińska M, Kempisty B, Tunchel S, Blay A, Shibli JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers (Basel) 2021; 13:polym13111685. [PMID: 34064251 PMCID: PMC8196877 DOI: 10.3390/polym13111685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Resorbable synthetic and natural polymer-based membranes have been extensively studied for guided tissue regeneration. Alloplastic biomaterials are often used for tissue regeneration due to their lower immunoreactivity when compared with allogeneic and xenogeneic materials. Plenum® Guide is a synthetic membrane material based on polydioxanone (PDO), whose surface morphology closely mimics the extracellular matrix. In this study, Plenum® Guide was compared with collagen membranes as a barrier material for bone-tissue regeneration in terms of acute and subchronic systemic toxicity. Moreover, characterizations such as morphology, thermal analysis (Tm = 107.35 °C and crystallinity degree = 52.86 ± 2.97 %, final product), swelling (thickness: 0.25 mm ≅ 436% and 0.5 mm ≅ 425% within 24 h), and mechanical tests (E = 30.1 ± 6.25 MPa; σ = 3.92 ± 0.28 MPa; ε = 287.96 ± 34.68%, final product) were performed. The in vivo results revealed that the PDO membranes induced a slightly higher quantity of newly formed bone tissue than the control group (score: treated group = 15, control group = 13) without detectable systemic toxicity (clinical signs and evaluation of the membranes after necropsy did not result in differences between groups, i.e., non-reaction -> tissue-reaction index = 1.3), showing that these synthetic membranes have the essential characteristics for an effective tissue regeneration. Human adipose-derived stem cells (hASCs) were seeded on PDO membranes; results demonstrated efficient cell migration, adhesion, spread, and proliferation, such that there was a slightly better hASC osteogenic differentiation on PDO than on collagen membranes. Hence, Plenum® Guide membranes are a safe and efficient alternative for resorbable membranes for tissue regeneration.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| | - Livia Pilatti
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Edvaldo Santos de Sousa Silva
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Magda Aline Nagasawa
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Diana Câmara
- Nicell—Pesquisa e Desenvolvimento Ltd.a, 2721 Av. Indianápolis, São Paulo 04063-005, Brazil;
| | - Nelson Lizier
- CCB—Centro de Criogenia Brasil, 1861 Av. Indianápolis, São Paulo 04063-003, Brazil;
| | - Eduardo Finger
- Hospital Israelita Albert Einstein, 627 Av. Albert Einstein, São Paulo 05652-900, Brazil;
| | | | - Bartosz Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - Samy Tunchel
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| |
Collapse
|
14
|
Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits. Cell Tissue Res 2021; 385:639-658. [PMID: 33966092 DOI: 10.1007/s00441-021-03458-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, effects of combining optimized tissue engineering bone (TEB) implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits were investigated. Physiological characteristics of bone marrow mesenchymal stem cells (BMMSCs), compact bone cells (CBCs), and bone marrow and compact bone coculture cells (BMMSC-CBCs) were compared to select the optimal seed cells for optimized TEB construction. Rabbits with segmental bone defects were treated in different ways (cancellous bone scaffold for group A, cancellous bone scaffold and mechanical loading for group B, optimized TEB for group C, optimized TEB and mechanical loading for group D, n = 4), and the bone repair were compared. BMMSC-CBCs showed better proliferation capacity than CBCs (p < 0.01) and stronger osteogenic differentiation ability than BMMSCs (p < 0.05). Heel-strike like mechanical loading improved proliferation and osteogenic differentiation ability and expression levels of TGFβ1 as well as BMP2 of seed cells in vitro (p < 0.05). At week 12 post-operation, group D showed the best bone repair, followed by groups B and C, while group A finished last (p < 0.05). During week 4 to 12 post-operation, group D peaked in terms of expression levels of TGFβ1, BMP2, and OCN, followed by groups B and C, while group A finished last (p < 0.05). Thus, BMMSC-CBCs showed good proliferation and osteogenic differentiation ability, and they were thought to be better as seed cells than BMMSCs and CBCs. The optimized TEB implantation combined with heel-strike like mechanical loading had a synergistic effect on bone defect healing, and enhanced expression of TGFβ1 and BMP2 played an important role in this process.
Collapse
|
15
|
Bullock G, Atkinson J, Gentile P, Hatton P, Miller C. Osteogenic Peptides and Attachment Methods Determine Tissue Regeneration in Modified Bone Graft Substitutes. J Funct Biomater 2021; 12:22. [PMID: 33807267 PMCID: PMC8103284 DOI: 10.3390/jfb12020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
The inclusion of biofunctional molecules with synthetic bone graft substitutes has the potential to enhance tissue regeneration during treatment of traumatic bone injuries. The clinical use of growth factors has though been associated with complications, some serious. The use of smaller, active peptides has the potential to overcome these problems and provide a cost-effective, safe route for the manufacture of enhanced bone graft substitutes. This review considers the design of peptide-enhanced bone graft substitutes, and how peptide selection and attachment method determine clinical efficacy. It was determined that covalent attachment may reduce the known risks associated with growth factor-loaded bone graft substitutes, providing a predictable tissue response and greater clinical efficacy. Peptide choice was found to be critical, but even within recognised families of biologically active peptides, the configurations that appeared to most closely mimic the biological molecules involved in natural bone healing processes were most potent. It was concluded that rational, evidence-based design of peptide-enhanced bone graft substitutes offers a pathway to clinical maturity in this highly promising field.
Collapse
Affiliation(s)
- George Bullock
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Joss Atkinson
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Newcastle upon Tyne NE1 7RU, UK;
| | - Paul Hatton
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Cheryl Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| |
Collapse
|
16
|
Kim HJ, Hong SJ, Lee S, Park JM, Park J, Park JS, Shim SH, Park K. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Suk Jun Hong
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sujin Lee
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Jong Min Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji‐In Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sung Han Shim
- Laboratory of Molecular Genetics Department of Biomedical Science College of Life Science CHA University 629, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Keun‐Hong Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| |
Collapse
|
17
|
New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence. Cancer Metastasis Rev 2020; 39:303-320. [PMID: 32086631 DOI: 10.1007/s10555-020-09845-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melatonin is an indole produced by the pineal gland at night under normal light or dark conditions, and its levels, which are higher in children than in adults, begin to decrease prior to the onset of puberty and continue to decline thereafter. Apart from circadian regulatory actions, melatonin has significant apoptotic, angiogenic, oncostatic, and antiproliferative effects on various cancer cells. Particularly, the ability of melatonin to inhibit skeletomuscular sarcoma, which most commonly affects children, teenagers, and young adults, is substantial. In the past few decades, the vast majority of references have focused on the concept of epithelial-mesenchymal transition involvement in invasion and migration to allow carcinoma cells to dissociate from each other and to degrade the extracellular matrix. Recently, researchers have applied this idea to sarcoma cells of mesenchymal origin, e.g., osteosarcoma and Ewing sarcoma, with their ability to initiate the invasion-metastasis cascade. Similarly, interest of the effects of melatonin has shifted from carcinomas to sarcomas. Herein, in this state-of-the-art review, we compiled the knowledge related to the molecular mechanism of antimetastatic actions of melatonin on skeletomuscular sarcoma as in childhood and during adolescence. Utilization of melatonin as an adjuvant with chemotherapeutic drugs for synergy and fortification of the antimetastatic effects for the reinforcement of therapeutic actions are considered.
Collapse
|
18
|
Chen XD, Tan JL, Feng Y, Huang LJ, Zhang M, Cheng B. Autophagy in fate determination of mesenchymal stem cells and bone remodeling. World J Stem Cells 2020; 12:776-786. [PMID: 32952858 PMCID: PMC7477662 DOI: 10.4252/wjsc.v12.i8.776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Jia-Li Tan
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Yi Feng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Li-Jia Huang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Mei Zhang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| |
Collapse
|
19
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
20
|
Tsai CC, Kuo SH, Lu TY, Cheng NC, Shie MY, Yu J. Enzyme-Cross-linked Gelatin Hydrogel Enriched with an Articular Cartilage Extracellular Matrix and Human Adipose-Derived Stem Cells for Hyaline Cartilage Regeneration of Rabbits. ACS Biomater Sci Eng 2020; 6:5110-5119. [PMID: 33455262 DOI: 10.1021/acsbiomaterials.9b01756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyaline cartilage regeneration remains clinically challenging. In this study, microbial transglutaminase was used to cross-link gelatin. The articular cartilage extracellular matrix (cECM), mainly comprising collagen type II and glycosaminoglycans (GAGs), which can support chondrogenesis, was enclosed in this enzyme-catalyzed hydrogel. After human adipose-derived stem cells (hASCs) were encapsulated in the hydrogel enriched with the cECM, the results demonstrated that the enzymatic cross-linking reaction is of low cytotoxicity. Moreover, the stem cells showed great proliferation and chondrogenic differentiation potential in the hydrogel. Most importantly, we assessed the therapeutic effects of applying a hydrogel enriched with the cECM and hASCs to repair a full-thickness osteochondral defect. At 8 weeks after surgery, the GCC group (hydrogel encapsulating cells and the cECM) exhibited a smooth articular surface with transparent new hyaline-like tissue macroscopically. According to histological analysis, inflammatory responses were hardly observed, and sound chondrocytes were aligned in the newly formed chondral layer. In addition, the GCC group exhibited significant improvement in the GAG content between weeks 4 and 8. In summary, the implantation of a gelatin hydrogel enriched with the cECM and hASCs could facilitate the hyaline cartilage regeneration significantly in rabbit knee joint models.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist., Taipei City 10048, Taiwan
| | - Ming-You Shie
- Department of Dentistry, China Medical University, No.91 Hsueh-Shih Rd., Taichung City 40402, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| |
Collapse
|
21
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
22
|
Ibrahim A, Rodriguez-Florez N, Gardner OFW, Zucchelli E, New SEP, Borghi A, Dunaway D, Bulstrode NW, Ferretti P. Three-dimensional environment and vascularization induce osteogenic maturation of human adipose-derived stem cells comparable to that of bone-derived progenitors. Stem Cells Transl Med 2020; 9:1651-1666. [PMID: 32639692 PMCID: PMC7695642 DOI: 10.1002/sctm.19-0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
While human adipose‐derived stem cells (hADSCs) are known to possess osteogenic differentiation potential, the bone tissues formed are generally considered rudimentary and immature compared with those made by bone‐derived precursor cells such as human bone marrow‐derived mesenchymal stem cells (hBMSCs) and less commonly studied human calvarium osteoprogenitor cells (hOPs). Traditional differentiation protocols have tended to focus on osteoinduction of hADSCs through the addition of osteogenic differentiation media or use of stimulatory bioactive scaffolds which have not resulted in mature bone formation. Here, we tested the hypothesis that by reproducing the physical as well as biochemical bone microenvironment through the use of three‐dimensional (3D) culture and vascularization we could enhance osteogenic maturation in hADSCs. In addition to biomolecular characterization, we performed structural analysis through extracellular collagen alignment and mineral density in our bone tissue engineered samples to evaluate osteogenic maturation. We further compared bone formed by hADSCs, hBMSCs, and hOPs against mature human pediatric calvarial bone, yet not extensively investigated. Although bone generated by all three cell types was still less mature than native pediatric bone, a fibrin‐based 3D microenvironment together with vascularization boosted osteogenic maturation of hADSC making it similar to that of bone‐derived osteoprogenitors. This demonstrates the important role of vascularization and 3D culture in driving osteogenic maturation of cells easily available but constitutively less committed to this lineage and suggests a crucial avenue for recreating the bone microenvironment for tissue engineering of mature craniofacial bone tissues from pediatric hADSCs, as well as hBMSCs and hOPs.
Collapse
Affiliation(s)
- Amel Ibrahim
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Naiara Rodriguez-Florez
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,TECNUN Escuela de Ingenieros, Universidad de Navarra, San Sebastian, Spain
| | - Oliver F W Gardner
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Eleonora Zucchelli
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sophie E P New
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alessandro Borghi
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - David Dunaway
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
23
|
A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis 2020; 11:372. [PMID: 32415085 PMCID: PMC7229165 DOI: 10.1038/s41419-020-2572-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Osteogenesis (OS) is a type of differentiation that is of great importance for bone homeostasis. Increasing studies suggest circular RNAs (circRNAs) as pivotal regulators in OS. This study proposed to investigate mechanism mediated by circRNAs in OS. Based on GEO data and qRT-PCR assay, we found that circ-DAB1 (has_circ_0113689) was significantly up-regulated during osteogenic differentiation in human BMSCs. Overexpressing circ-DAB1 proliferation and osteogenic differentiation of BMSCs, whereas silencing circ-DAB1 elicited opposite functions. Subsequently, recombination signal-binding protein for immunoglobulin kappa J region (RBPJ), an important transcription factor in NOTCH pathway, was found to interact with DAB1 promoter while not to combine with circ-DAB1. Interestingly, circ-DAB1 overexpression could result in the increasing binding between RBPJ and DAB adaptor protein 1 (DAB1) promoter. Overexpressing circ-DAB1 upregulated RBPJ in BMSCs to induce DAB1 level. Further, we uncovered that circ-DAB1 upregulated RBPJ through sequestering miR-1270 and miR-944. Restoration experiments demonstrated that knocking down either RBPJ or DAB1 partially recovered BMSC proliferation and osteogenic differentiation that was suppressed by circ-DAB1 overexpression. Conclusively, circ-DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via NOTCH/RBPJ pathway.
Collapse
|
24
|
O'Keefe RJ, Tuan RS, Lane NE, Awad HA, Barry F, Bunnell BA, Colnot C, Drake MT, Drissi H, Dyment NA, Fortier LA, Guldberg RE, Kandel R, Little DG, Marshall MF, Mao JJ, Nakamura N, Proffen BL, Rodeo SA, Rosen V, Thomopoulos S, Schwarz EM, Serra R. American Society for Bone and Mineral Research-Orthopaedic Research Society Joint Task Force Report on Cell-Based Therapies - Secondary Publication. J Orthop Res 2020; 38:485-502. [PMID: 31994782 DOI: 10.1002/jor.24485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy. Both the American Society for Bone and Mineral Research (ASBMR) and the Orthopaedic Research Society (ORS) are committed to ensuring that the potential of cell-based therapies is realized through rigorous, reproducible, and clinically meaningful scientific discovery. The two organizations convened a multidisciplinary and international Task Force composed of physicians, surgeons, and scientists who are recognized experts in the development and use of cell-based therapies. The Task Force was charged with defining the state-of-the art in cell-based therapies and identifying the gaps in knowledge and methodologies that should guide the research agenda. The efforts of this Task Force are designed to provide researchers and clinicians with a better understanding of the current state of the science and research needed to advance the study and use of cell-based therapies for skeletal tissues. The design and implementation of rigorous, thorough protocols will be critical to leveraging these innovative treatments and optimizing clinical and functional patient outcomes. In addition to providing specific recommendations and ethical considerations for preclinical and clinical investigations, this report concludes with an outline to address knowledge gaps in how to determine the cell autonomous and nonautonomous effects of a donor population used for bone regeneration. © 2020 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:485-502, 2020.
Collapse
Affiliation(s)
- Regis J O'Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Rocky S Tuan
- The Chinese University of Hong Kong, Institute for Tissue Engineering and Regenerative Medicine, Hong Kong SAR, China
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, CA, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Bruce A Bunnell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | | | - Matthew T Drake
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory Healthcare, Emory University, Tucker, GA, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rita Kandel
- Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David G Little
- Orthopaedic Research and Biotechnology, Kids Research Institute, Westmead, Australia
| | - Mary F Marshall
- Center for Biomedical Ethics and Humanities, University of Virginia, Charlottesville, VA, USA
| | - Jeremy J Mao
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| | - Benedikt L Proffen
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Harvard Medical School/Boston Children's Hospital, Boston, MA, USA
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Rosa Serra
- University of Alabama at Birmingham, AL, USA
| |
Collapse
|
25
|
[Tribbles pseudokinase 3 inhibits the adipogenic differentiation of human adipose-derived mesenchymal stem cells]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52. [PMID: 32071456 PMCID: PMC7439058 DOI: 10.19723/j.issn.1671-167x.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify the role of Tribbles pseudokinase 3 (TRIB3) during the process of adipogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs), and to provide a new target and a novel idea for the application of hASCs in adipose tissue engineering and soft tissue regeneration. METHODS TRIB3-knockdown hASCs (shTRIB3) and TRIB3-overexpression hASCs (TRIB3-over) were established using lentivirus transfection technique. The transfection effect was estimated by the visible presence of green fluorescence as the expression of green fluorescent protein (GFP) in the transfected hASCs. The lentiviral transfection efficiency was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. After adipogenic induction, Oil Red staining and quantification, as well as qRT-PCR about several specific adipogenic markers were used to evaluate the adipogenic differentiation ability of hASCs. RESULTS In TRIB3-knockdown hASCs, the TRIB3 mRNA expression level decreased by about 84.3% compared with the control group (P<0.01), and the TRIB3 protein level also showed obvious reduction. Oppositely, in TRIB3-overexpression hASCs, the TRIB3 mRNA expression level increased by approximately 160% compared with the control group (P<0.01), and the TRIB3 protein level also showed a significant increase. These results indicated a successful construction of TRIB3-knockdown hASCs and TRIB3-overexpression hASCs. The Oil Red staining results showed that the down-regulation of TRIB3 significantly promoted lipid droplets formation in hASCs, consistent with Oil Red quantification. On the other hand, the up-regulation of TRIB3 suppressed lipid droplets formation in hASCs, consistent with Oil Red quantification. After adipogenic induction, adipogenesis-related genes, including peroxisome proliferator-activated receptor γ (PPARγ), cluster of differentiation 36 (CD36) and CCAAT/enhancer binding protein α (C/EBPα), were increased significantly in TRIB3-knockdown hASCs compared with the control group (P<0.01). Oppositely, PPARγ, CD36 and lipoprotein lipase (LPL) were significantly decreased in TRIB3-overexpression hASCs compared with the control group (P<0.01). CONCLUSION TRIB3 inhibited the adipogenic differentiation of hASCs. Knockdown of TRIB3 promoted the ability of adipogenesis of hASCs, while overexpression of TRIB3 inhibited the adipogenic differentiation of hASCs. Considering the important role of PPARγ in the adipogenis process, the molecular mechanism of the regulatory function of TRIB3 may be related with PPARγ signal pathway.
Collapse
|
26
|
O'Keefe RJ, Tuan RS, Lane NE, Awad HA, Barry F, Bunnell BA, Colnot C, Drake MT, Drissi H, Dyment NA, Fortier LA, Guldberg RE, Kandel R, Little DG, Marshall MF, Mao JJ, Nakamura N, Proffen BL, Rodeo SA, Rosen V, Thomopoulos S, Schwarz EM, Serra R. American Society for Bone and Mineral Research-Orthopaedic Research Society Joint Task Force Report on Cell-Based Therapies. J Bone Miner Res 2020; 35:3-17. [PMID: 31545883 DOI: 10.1002/jbmr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023]
Abstract
Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy. Both the American Society for Bone and Mineral Research (ASBMR) and the Orthopaedic Research Society (ORS) are committed to ensuring that the potential of cell-based therapies is realized through rigorous, reproducible, and clinically meaningful scientific discovery. The two organizations convened a multidisciplinary and international Task Force composed of physicians, surgeons, and scientists who are recognized experts in the development and use of cell-based therapies. The Task Force was charged with defining the state-of-the art in cell-based therapies and identifying the gaps in knowledge and methodologies that should guide the research agenda. The efforts of this Task Force are designed to provide researchers and clinicians with a better understanding of the current state of the science and research needed to advance the study and use of cell-based therapies for skeletal tissues. The design and implementation of rigorous, thorough protocols will be critical to leveraging these innovative treatments and optimizing clinical and functional patient outcomes. In addition to providing specific recommendations and ethical considerations for preclinical and clinical investigations, this report concludes with an outline to address knowledge gaps in how to determine the cell autonomous and nonautonomous effects of a donor population used for bone regeneration. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Regis J O'Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Rocky S Tuan
- The Chinese University of Hong Kong, Institute for Tissue Engineering and Regenerative Medicine, Hong Kong SAR, China
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, CA, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Bruce A Bunnell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | | | - Matthew T Drake
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory Healthcare, Emory University, Tucker, GA, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rita Kandel
- Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David G Little
- Orthopaedic Research and Biotechnology, Kids Research Institute, Westmead, Australia
| | - Mary F Marshall
- Center for Biomedical Ethics and Humanities, University of Virginia, Charlottesville, VA, USA
| | - Jeremy J Mao
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| | - Benedikt L Proffen
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Harvard Medical School/Boston Children's Hospital, Boston, MA, USA
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Rosa Serra
- University of Alabama at Birmingham, AL, USA
| |
Collapse
|
27
|
Przekora A, Juszkiewicz L. The Effect of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells' Therapy in the Treatment of Chronic Posttraumatic Spinal Cord Injury in a Domestic Ferret Patient. Cell Transplant 2020; 29:963689720928982. [PMID: 32441545 PMCID: PMC7563821 DOI: 10.1177/0963689720928982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is considered as one of the most problematic neurological conditions requiring specialized clinical intervention. Taking into account that SCI is characterized by extensive loss of nerve cells, stem cell-based therapy seems to be a reasonable modern strategy to the treatment of SCI. The presented case report describes for the first time experimental treatment with the use of autologous adipose tissue-derived mesenchymal stem cells (ADSCs) of the chronic posttraumatic SCI in a domestic ferret patient with paresis of back legs. It should be noted that most reports in the available literature concern ADSC-based therapies for acute or subacute SCI treatment in other species. Application of ADSC-based therapy did not cause any adverse reactions and resulted in significant improvement of neurological and motor functions. Based on these outcomes, it may be concluded that this form of therapy is promising and may be potentially translated into clinical veterinary practice.
Collapse
Affiliation(s)
- Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Poland
| | | |
Collapse
|
28
|
Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin. Biochem Biophys Res Commun 2019; 523:458-464. [PMID: 31882121 DOI: 10.1016/j.bbrc.2019.12.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewal cells that are widely used in regenerative medicine. The culture of three-dimensional (3D) spheroid MSCs more accurately mimics the biological microenvironment. However, it is unclear which key molecules are responsible for the cell fate control of MSCs during 3D spheroid formation and their impact on the functional characteristics of these stem cells. Furthermore, it remains unclear what effects 3D spheroid MSC transplantation has on new bone formation compared with that of 2D monolayer MSCs. We assessed whether the osteogenerative potential of 3D spheroid MSCs is greater than that of 2D monolayer MSCs in vitro. In addition, to elucidate the ability of 3D spheroid MSCs to regenerate bone, we examined the effects of transplanting wild-type (WT) or knockout (KO) spheroid MSCs on new bone formation in mice calvarial defect model in vitro. The 3D spheroid MSC culture dramatically upregulated into stemness markers compared with the 2D monolayer MSC culture. In contrast, BMP-2 significantly increased the osteogenesis-related molecules in the 3D spheroid MSCs but, in turn, downregulated the stemness markers. BMP-2 activated Smad1/5 together with Wnt/β-catenin in 3D spheroid MSCs. Transplantation of these MSCs into aged mice with calvarial defects promoted new bone formation compared with that of 2D monolayer MSCs. In contrast, transplantation of 3D or 2D β-catenin knockout MSCs induced little new bone formation. The 3D spheroid MSC culture had higher stemness compared with the 2D monolayer MSC culture. The culture of 3D spheroid MSCs rapidly promoted osteoblastogenesis and bone formation through synergistic activation of the Wnt/β-catenin pathway in vitro. The transformation of 3D spheroid, but not 2D monolayer, MSCs promoted new bone regeneration in vivo. These results indicate that transplantation of 3D spheroid MSCs in regeneration therapy contributes to a shorter regenerative healing process, including new bone formation.
Collapse
|
29
|
Lu KH, Lin RC, Yang JS, Yang WE, Reiter RJ, Yang SF. Molecular and Cellular Mechanisms of Melatonin in Osteosarcoma. Cells 2019; 8:E1618. [PMID: 31842295 PMCID: PMC6952995 DOI: 10.3390/cells8121618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma, the most common primary bone malignancy, occurs most frequently in adolescents with a peak of incidence at 11-15 years. Melatonin, an indole amine hormone, shows a wide range of anticancer activities. The decrease in melatonin levels simultaneously concurs with the increase in bone growth and the peak age distribution of osteosarcoma during puberty, so melatonin has been utilized as an adjunct to chemotherapy to improve the quality of life and clinical outcomes. While a large amount of research has been conducted to understand the complex pleiotropic functions and the molecular and cellular actions elicited by melatonin in various types of cancers, a few review reports have focused on osteosarcoma. Herein, we summarized the anti-osteosarcoma effects of melatonin and its underlying molecular mechanisms to illustrate the known significance of melatonin in osteosarcoma and to address cellular signaling pathways of melatonin in vitro and in animal models. Even in the same kind of osteosarcoma, melatonin has been sparingly investigated to counteract tumor growth, apoptosis, and metastasis through different mechanisms, depending on different cell lines. We highlighted the underlying mechanism of anti-osteosarcoma properties evoked by melatonin, including antioxidant activity, anti-proliferation, induction of apoptosis, and the inhibition of invasion and metastasis. Moreover, we discussed the drug synergy effects of the role of melatonin involved and the method to fortify the anti-cancer effects on osteosarcoma. As a potential therapeutic agent, melatonin is safe for children and adolescents and is a promising candidate for an adjuvant by reinforcing the therapeutic effects and abolishing the unwanted consequences of chemotherapies.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (K.-H.L.); (R.-C.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Renn-Chia Lin
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (K.-H.L.); (R.-C.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Hyperbaric Oxygen Therapy and Wound Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (W.-E.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (W.-E.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (W.-E.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
30
|
Wang Y, Xu J, Meyers CA, Gao Y, Tian Y, Broderick K, Peault B, James AW. PDGFRα marks distinct perivascular populations with different osteogenic potential within adipose tissue. Stem Cells 2019; 38:276-290. [PMID: 31742801 DOI: 10.1002/stem.3108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
The perivascular niche within adipose tissue is known to house multipotent cells, including osteoblast precursors. However, the identity of perivascular subpopulations that may mineralize or ossify most readily is not known. Here, we utilize inducible PDGFRα (platelet-derived growth factor alpha) reporter animals to identify subpopulations of perivascular progenitor cells. Results showed that PDGFRα-expressing cells are present in four histologic niches within inguinal fat, including two perivascular locations. PDGFRα+ cells are most frequent within the tunica adventitia of arteries and veins, where PDGFRα+ cells populate the inner aspects of the adventitial layer. Although both PDGFRα+ and PDGFRα- fractions are multipotent progenitor cells, adipose tissue-derived PDGFRα+ stromal cells proliferate faster and mineralize to a greater degree than their PDGFRα- counterparts. Likewise, PDGFRα+ ectopic implants reconstitute the perivascular niche and ossify to a greater degree than PDGFRα- cell fractions. Adventicytes can be further grouped into three distinct groups based on expression of PDGFRα and/or CD34. When further partitioned, adventicytes co-expressing PDGFRα and CD34 represented a cell fraction with the highest mineralization potential. Long-term tracing studies showed that PDGFRα-expressing adventicytes give rise to adipocytes, but not to other cells within the vessel wall under homeostatic conditions. However, upon bone morphogenetic protein 2 (BMP2)-induced ossicle formation, descendants of PDGFRα+ cells gave rise to osteoblasts, adipocytes, and "pericyte-like" cells within the ossicle. In sum, PDGFRα marks distinct perivascular osteoprogenitor cell subpopulations within adipose tissue. The identification of perivascular osteoprogenitors may contribute to our improved understanding of pathologic mineralization/ossification.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yongxing Gao
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Ye Tian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
31
|
Uri O, Behrbalk E, Folman Y. Local implantation of autologous adipose-derived stem cells increases femoral strength and bone density in osteoporotic rats: A randomized controlled animal study. J Orthop Surg (Hong Kong) 2019; 26:2309499018799534. [PMID: 30235971 DOI: 10.1177/2309499018799534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deficient osteogenic capacity of bone marrow stem cells plays a critical role in the pathophysiology of osteoporosis. Adipose-derived stem cells (ADSCs) have emerged as a promising source of skeletal progenitor cells. The capacity of ADSCs to undergo osteogenic differentiation and induce mineralized tissue formation may be beneficial in the treatment of osteoporosis. We question whether administration of autologous ADSCs into the proximal femur of osteoporotic rats will induce osteogenesis and enhance bone quality and strength. MATERIALS AND METHODS Thirty ovariectomized female rats were randomly assigned to one of the two treatment groups: (1) percutanous implantation of autogenous ADSCs-seeded scaffold into the proximal femur and (2) percutanous implantation of non-seeded scaffold. The contralateral untreated femur served as control. The effect of treatment on bone characteristics was assessed at 12-week follow-up by micro-computed tomography analysis, mechanical testing, and histological analysis. RESULTS The mean cortical thickness, total bone volume density, and bone load to failure in femora injected with autologous ADSCs-seeded scaffold was significantly higher compared to femora injected with non-seeded scaffold and compared to the untreated control femora ( p < 0.01). Histological examination of the injected specimens revealed complete osseo-integration of the scaffolds with direct conversion of the ADSCs into osteoblasts and no inflammatory response. CONCLUSIONS Autogenous ADSCs implantation into the proximal femur of rats with ovariectomy-related osteoporosis promoted bone regeneration and increased bone strength at short-term follow-up. These findings highlight the potential benefit of autogenous ADSCs in the treatment of osteoporosis. LEVEL OF EVIDENCE Level I, randomized controlled trial, animal study.
Collapse
Affiliation(s)
| | | | - Yoram Folman
- Department of Orthopaedics, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
32
|
Sun X, Tung W, Wang W, Xu X, Zou J, Gould OEC, Kratz K, Ma N, Lendlein A. The effect of stiffness variation of electrospun fiber meshes of multiblock copolymers on the osteogenic differentiation of human mesenchymal stem cells. Clin Hemorheol Microcirc 2019; 73:219-228. [PMID: 31561335 DOI: 10.3233/ch-199206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning has attracted significant attention as a method to produce cell culture substrates whose fibrous structure mimics the native extracellular matrix (ECM). In this study, the influence of E-modulus of fibrous substrates on the lineage commitment of human adipose-derived stem cells (hADSCs) was studied using fiber meshes prepared via the electrospinning of a polyetheresterurethane (PEEU) consisting of poly(ρ-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments. The PPDO: PCL weight ratio was varied from 40:60 to 70:30 to adjust the physiochemical properties of the PEEU fibers. The cells attached on stiffer PEEU70 (PPDO:PCL,= 70:30) fiber meshes displayed an elongated morphology compared to those cultured on softer fibers. The nuclear aspect ratio (width vs. length of a nucleus) of hADSCs cultured on softer PEEU40 (PPDO:PCL = 40:60) fibers was lower than on stiffer fibers. The osteogenic differentiation of hADSCs was enhanced by culturing on stiffer fibers. Compared to PEEU40, a 73% increase of osteocalcin expression and a 34% enhancement of alkaline phosphatase (ALP) activity was observed in cells on PEEU70. These results demonstrated that the differentiation commitment of stem cells could be regulated via tailoring the mechanical properties of electrospun fibers.
Collapse
Affiliation(s)
- Xianlei Sun
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wingtai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Oliver E C Gould
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
33
|
Zhu B, Xue F, Zhang C, Li G. LMCD1 promotes osteogenic differentiation of human bone marrow stem cells by regulating BMP signaling. Cell Death Dis 2019; 10:647. [PMID: 31501411 PMCID: PMC6733937 DOI: 10.1038/s41419-019-1876-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
Human bone marrow stem cells (BMSCs) are heterogeneous progenitor cells with two defining features, self-renew and multi-lineage differentiation. As one of the differentiation directions, osteogenesis is vital for bone homeostasis. A growing body of evidences show that ubiquitin-dependent protein degradation plays an essential role in the osteogenic differentiation of BMSCs. In this study, we found that LMCD1 was upregulated during osteogenic differentiation process of BMSCs by analyzing GSE80614. In vitro and in vivo functional studies confirmed that LMCD1 was critical to the osteogenic commitment of BMSCs. Compared to those of the controls, downregulation of LMCD1 significantly restrained osteogenic differentiation and enhanced adipogenic differentiation, while upregulation of LMCD1 increased the osteogenic differentiation and suppressed adipogenic differentiation. Mechanically, we found that LMCD1 could protect RUNX2 and Smad1 protein from Smurf1-induced ubiquitination degradation thereby regulating BMP signaling. In conclusion, our findings suggest that LMCD1 is a novel regulator of osteogenic differentiation and may be a potential therapeutic target for bone metabolism related diseases.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO.600 Yishan Road, 200233, Shanghai, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO.600 Yishan Road, 200233, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO.600 Yishan Road, 200233, Shanghai, China.
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO.600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
34
|
Mohiuddin OA, Campbell B, Poche JN, Ma M, Rogers E, Gaupp D, Harrison MAA, Bunnell BA, Hayes DJ, Gimble JM. Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model. Front Bioeng Biotechnol 2019; 7:211. [PMID: 31552237 PMCID: PMC6743019 DOI: 10.3389/fbioe.2019.00211] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Critical-sized bone defects fail to heal and often cause non-union. Standard treatments employ autologous bone grafting, which can cause donor tissue loss/pain. Although several scaffold types can enhance bone regeneration, multiple factors limit their level of success. To address this issue, this study evaluated a novel decellularized human adipose tissue (DAT) hydrogel as an alternative. In this study, DAT hydrogel alone, or in combination with adipose-derived stromal/stem cells (ASC), osteo-induced ASCs (OIASC), and hydroxyapatite were tested for their ability to mediate repair of a critical-sized (3 mm) femoral defect created in C57BL/6 mice. Micro-computed tomography results showed that all DAT hydrogel treated groups significantly enhanced bone regeneration, with OIASC + hydroxyapatite treated group displaying the most robust bone regeneration. Histological analyses revealed that all treatments resulted in significantly higher tissue areas with the relative mineralized tissue area significantly increased at 12 weeks; however, cartilaginous content was lowest among treatment groups with OIASC. Immunohistochemical analyses showed that DAT hydrogel enhanced collagen I and osteopontin expression, while the addition of OIASCs to the hydrogel reduced collagen II levels. Thus, DAT hydrogel promotes bone regeneration in a critical-sized femoral defect model that is further enhanced in the presence of OIASCs and hydroxyapatite.
Collapse
Affiliation(s)
- Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Brett Campbell
- School of Medicine, Tulane University, New Orleans, LA, United States
| | - J Nick Poche
- School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Michelle Ma
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Obatala Sciences, New Orleans, LA, United States
| | - Emma Rogers
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Dina Gaupp
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark A A Harrison
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, United States
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,LaCell LLC, New Orleans, LA, United States
| |
Collapse
|
35
|
Review of the Pathways Involved in the Osteogenic Differentiation of Adipose-Derived Stem Cells. J Craniofac Surg 2019; 30:703-708. [PMID: 30839467 DOI: 10.1097/scs.0000000000005447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Grafts and prosthetic materials used for the repair of bone defects are often accompanied by comorbidity and rejection. Therefore, there is an immense need for novel approaches to combating the issues surrounding such defects. Because of their accessibility, substantial proportion, and osteogenic differentiation potential, adipose-derived stem cells (ASCs) make for an ideal source of bone tissue in regenerative medicine. However, efficient induction of ASCs toward an osteoblastic lineage in vivo is met with challenges, and many signaling pathways must come together to secure osteoblastogenesis. Among them are bone morphogenic protein, wingless-related integration site protein, Notch, Hedgehog, fibroblast growth factor, vascular endothelial growth factor, and extracellular regulated-signal kinase. The goal of this literature review is to conglomerate the present research on these pathways to formulate a better understanding of how ASCs are most effectively transformed into bone in the context of tissue engineering.
Collapse
|
36
|
Fragogeorgi EA, Rouchota M, Georgiou M, Velez M, Bouziotis P, Loudos G. In vivo imaging techniques for bone tissue engineering. J Tissue Eng 2019; 10:2041731419854586. [PMID: 31258885 PMCID: PMC6589947 DOI: 10.1177/2041731419854586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone is a dynamic tissue that constantly undergoes modeling and remodeling. Bone tissue engineering relying on the development of novel implant scaffolds for the treatment of pre-clinical bone defects has been extensively evaluated by histological techniques. The study of bone remodeling, that takes place over several weeks, is limited by the requirement of a large number of animals and time-consuming and labor-intensive procedures. X-ray-based imaging methods that can non-invasively detect the newly formed bone tissue have therefore been extensively applied in pre-clinical research and in clinical practice. The use of other imaging techniques at a pre-clinical level that act as supportive tools is convenient. This review mainly focuses on nuclear imaging methods (single photon emission computed tomography and positron emission tomography), either alone or used in combination with computed tomography. It addresses their application to small animal models with bone defects, both untreated and filled with substitute materials, to boost the knowledge on bone regenerative processes.
Collapse
Affiliation(s)
- Eirini A Fragogeorgi
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - Maritina Rouchota
- Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| | - Maria Georgiou
- Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, Spain
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - George Loudos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece.,Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| |
Collapse
|
37
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
38
|
Alexander A, Saraf S, Saraf S, Agrawal M, Patel RJ, Agrawal P, Khan J, Ajazuddin. Amalgamation of Stem Cells with Nanotechnology: A Unique Therapeutic Approach. Curr Stem Cell Res Ther 2019; 14:83-92. [DOI: 10.2174/1574888x13666180703143219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
In the last few years, the stem cell therapy has gained much popularity among researchers and scientists of biomedical field. It became an effective and alternative approach for the treatment of various physiological conditions (like accidental injuries, burn damage, organ failure, bone marrow transfusion, etc.) and chronic disorders (diabetes, cancer, neurodegenerative disorders, periodontal diseases, etc.). Due to the unique ability of cellular differentiation and regeneration, stem cell therapy serves as the last hope for various incurable conditions and severe damages. The amalgamation of stem cell therapy with nanotechnology brings new prospects to the stem cell research, as it improves the specificity of the treatment and controls the stem cell proliferation and differentiation. In this review article, we have discussed various nanocarrier systems such as carbon nanotubes, quantum dots, nanofibers, nanoparticles, nanodiamonds, nanoparticle scaffold, etc. utilized for the delivery of stem cell inside the body.
Collapse
Affiliation(s)
- Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- Hemchand Yadav University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg, Chhattisgarh 491001, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology (CHARUSAT), Gujarat 388421, India
| | - Palak Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Junaid Khan
- University Teaching Department (Pharmacy), Sarguja University, Ambikapur Chhattisgarh 497001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| |
Collapse
|
39
|
Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y. Inhibition of PTGS1 promotes osteogenic differentiation of adipose-derived stem cells by suppressing NF-kB signaling. Stem Cell Res Ther 2019; 10:57. [PMID: 30760327 PMCID: PMC6375160 DOI: 10.1186/s13287-019-1167-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tissue inflammation is an important problem in the field of human adipose-derived stem cell (ASC)-based therapeutic bone regeneration. Many studies indicate that inflammatory cytokines are disadvantageous for osteogenic differentiation and bone formation. Therefore, overcoming inflammation would be greatly beneficial in promoting ASC-mediated bone regeneration. The present study aims to investigate the potential anti-inflammatory role of Prostaglandin G/H synthase 1 (PTGS1) during the osteogenic differentiation of ASCs. METHODS We performed TNFα treatment to investigate the response of PTGS1 to inflammation. Loss- and gain-of-function experiments were applied to investigate the function of PTGS1 in the osteogenic differentiation of ASCs ex vivo and in vivo. Western blot and confocal analyses were used to determine the molecular mechanism of PTGS1-regulated osteogenic differentiation. RESULTS Our work demonstrates that PTGS1 expression is significantly increased upon inflammatory cytokine treatment. Both ex vivo and in vivo studies indicate that PTGS1 is required for the osteogenic differentiation of ASCs. Mechanistically, we show that PTGS1 regulates osteogenesis of ASCs via modulating the NF-κB signaling pathway. CONCLUSIONS Collectively, this work confirms that the PTGS1-NF-κB signaling pathway is a novel molecular target for ASC-mediated regenerative medicine.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
40
|
Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1036-1051. [PMID: 30678895 DOI: 10.1016/j.msec.2019.01.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tissue engineered products (TEPs), which mean biomaterials containing either cells or growth factors or both cells and growth factors, may be used as an alternative to the autografts taken directly from the bone of the patients. Nevertheless, the use of TEPs needs much more understanding of biointeractions between biomaterials and eukaryotic cells. Despite the possibility of the use of in vitro cellular models for initial evaluation of the host response to the implanted biomaterial, it is observed that most researchers use cell cultures only for the evaluation of cytotoxicity and cell proliferation on the biomaterial surface, and then they proceed to animal models and in vivo testing of bone implants without fully utilizing the scientific potential of in vitro models. In this review, the most important biointeractions between eukaryotic cells and biomaterials were discussed, indicating molecular mechanisms of cell adhesion, proliferation, and biomaterial-induced activation of immune cells. The article also describes types of cellular models which are commonly used for biomaterial testing and highlights the possibilities and drawbacks of in vitro tests for biocompatibility evaluation of novel scaffolds. Finally, the review summarizes recent findings concerning the use of adult mesenchymal stem cells for TEP generation and compares the potential of bone marrow- and adipose tissue-derived stem cells in regenerative medicine applications.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
41
|
Wang Y, Xu J, Chang L, Meyers CA, Zhang L, Broderick K, Lee M, Peault B, James AW. Relative contributions of adipose-resident CD146 + pericytes and CD34 + adventitial progenitor cells in bone tissue engineering. NPJ Regen Med 2019; 4:1. [PMID: 30622740 PMCID: PMC6323123 DOI: 10.1038/s41536-018-0063-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Pericytes and other perivascular stem/stromal cells are of growing interest in the field of tissue engineering. A portion of perivascular cells are well recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Here, we investigate the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair. CD146+CD34-CD31-CD45-pericytes and CD34+CD146-CD31-CD45-adventitial cells were derived from human adipose tissue and applied alone or in combination to calvarial bone defects in mice. In vitro, osteogenic differentiation and tubulogenesis assays were performed using either fluorescence activated cell sorting-derived CD146+ pericytes or CD34+ adventitial cells. Results showed that CD146+ pericytes induced increased cord formation in vitro and angiogenesis in vivo in comparison with patient-matched CD34+ adventitial cells. In contrast, CD34+ adventitial cells demonstrated heightened paracrine-induced osteogenesis in vitro. When applied in a critical-size calvarial defect model in NOD/SCID mice, the combination treatment of CD146+ pericytes with CD34+ adventitial cells led to greater re-ossification than either cell type alone. In summary, adipose-derived CD146+ pericytes and CD34+ adventitial cells display functionally distinct yet overlapping and complementary roles in bone defect repair. Consequently, CD146+ pericytes and CD34+ adventitial cells may demonstrate synergistic bone healing when applied as a combination cellular therapy.
Collapse
Grants
- G1000816 Medical Research Council
- K08 AR068316 NIAMS NIH HHS
- R01 AR070773 NIAMS NIH HHS
- R21 DE027922 NIDCR NIH HHS
- The present work was supported by the NIH/NIAMS (R01 AR070773, K08 AR068316), NIH/NIDCR (R21 DE027922), USAMRAA (W81XWH-18-1-0121, W81XWH-18-1-0336, W81XWH-18-10613), American Cancer Society (Research Scholar Grant, RSG-18-027-01-CSM), the Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation, the Maryland Stem Cell Research Foundation, and the Musculoskeletal Transplant Foundation.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, 90095 CA USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
- Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
| |
Collapse
|
42
|
Li H, Fan J, Fan L, Li T, Yang Y, Xu H, Deng L, Li J, Li T, Weng X, Wang S, Chunhua Zhao R. MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF-β/SMAD2 Signaling Pathway. Aging Dis 2018; 9:1058-1073. [PMID: 30574418 PMCID: PMC6284771 DOI: 10.14336/ad.2018.0214] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
As the population ages, the medical and socioeconomic impact of age-related bone disorders will further increase. An imbalance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) can lead to various bone and metabolic diseases such as osteoporosis. Thus, understanding the molecular mechanisms underlying MSC osteogenic and adipogenic differentiation is important for the discovery of novel therapeutic paradigms for these diseases. miR-10b has been widely reported in tumorigenesis, cancer invasion and metastasis. However, the effects and potential mechanisms of miR-10b in the regulation of MSC adipogenic and osteogenic differentiation have not been explored. In this study, we found that the expression of miR-10b was positively correlated with bone formation marker genes ALP, RUNX2 and OPN, and negatively correlated with adipogenic markers CEBPα, PPARγ and AP2 in clinical osteoporosis samples. Overexpression of miR-10b enhanced osteogenic differentiation and inhibited adipogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro, whereas downregulation of miR-10b reversed these effects. Furthermore, miR-10b promoted ectopic bone formation in vivo. Target prediction and dual luciferase reporter assays identified SMAD2 as a potential target of miR-10b. Silencing endogenous SMAD2 expression in hADSCs enhanced osteogenesis but repressed adipogenesis. Pathway analysis indicated that miR-10b promotes osteogenic differentiation and bone formation via the TGF-β signaling pathway, while suppressing adipogenic differentiation may be primarily mediated by other pathways. Taken together, our findings imply that miR-10b acts as a critical regulator for balancing osteogenic and adipogenic differentiation of hADSCs by repressing SMAD2 and partly through the TGF-β pathway. Our study suggests that miR-10b is a novel target for controlling bone and metabolic diseases.
Collapse
Affiliation(s)
- Hongling Li
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Junfen Fan
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Linyuan Fan
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Tangping Li
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Yanlei Yang
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Haoying Xu
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Luchan Deng
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Jing Li
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Tao Li
- 2Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China.,3Current address: Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xisheng Weng
- 2Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Shihua Wang
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Robert Chunhua Zhao
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| |
Collapse
|
43
|
Meyers CA, Xu J, Asatrian G, Ding C, Shen J, Broderick K, Ting K, Soo C, Peault B, James AW. WISP-1 drives bone formation at the expense of fat formation in human perivascular stem cells. Sci Rep 2018; 8:15618. [PMID: 30353078 PMCID: PMC6199241 DOI: 10.1038/s41598-018-34143-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
The vascular wall within adipose tissue is a source of mesenchymal progenitors, referred to as perivascular stem/stromal cells (PSC). PSC are isolated via fluorescence activated cell sorting (FACS), and defined as a bipartite population of pericytes and adventitial progenitor cells (APCs). Those factors that promote the differentiation of PSC into bone or fat cell types are not well understood. Here, we observed high expression of WISP-1 among human PSC in vivo, after purification, and upon transplantation in a bone defect. Next, modulation of WISP-1 expression was performed, using WISP-1 overexpression, WISP-1 protein, or WISP-1 siRNA. Results demonstrated that WISP-1 is expressed in the perivascular niche, and high expression is maintained after purification of PSC, and upon transplantation in a bone microenvironment. In vitro studies demonstrate that WISP-1 has pro-osteogenic/anti-adipocytic effects in human PSC, and that regulation of BMP signaling activity may underlie these effects. In summary, our results demonstrate the importance of the matricellular protein WISP-1 in regulation of the differentiation of human stem cell types within the perivascular niche. WISP-1 signaling upregulation may be of future benefit in cell therapy mediated bone tissue engineering, for the healing of bone defects or other orthopaedic applications.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Catherine Ding
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, 21205, Baltimore, United States
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, California, Los Angeles, 90095, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States
- Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States.
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States.
| |
Collapse
|
44
|
Trávníčková M, Bačáková L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res 2018; 67:831-850. [PMID: 30204468 DOI: 10.33549/physiolres.933820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is a very promising field of regenerative medicine. Life expectancy has been increasing, and tissue replacement is increasingly needed in patients suffering from various degenerative disorders of the organs. The use of adult mesenchymal stem cells (e.g. from adipose tissue or from bone marrow) in tissue engineering seems to be a promising approach for tissue replacements. Clinical applications can make direct use of the large secretome of these cells, which can have a positive influence on other cells around. Another advantage of adult mesenchymal stem cells is the possibility to differentiate them into various mature cells via appropriate culture conditions (i.e. medium composition, biomaterial properties, and dynamic conditions). This review is focused on current and future ways to carry out tissue replacement of damaged bones and blood vessels, especially with the use of suitable adult mesenchymal stem cells as a potential source of differentiated mature cells that can later be used for tissue replacement. The advantages and disadvantages of different stem cell sources are discussed, with a main focus on adipose-derived stem cells. Patient factors that can influence later clinical applications are taken into account.
Collapse
Affiliation(s)
- M Trávníčková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
45
|
Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies. Front Med 2018; 13:160-188. [PMID: 30047029 DOI: 10.1007/s11684-018-0629-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuelong Huang
- Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - Chi Ma
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Tian
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China. .,Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China.
| |
Collapse
|
46
|
Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y. LRRC15 promotes osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear translocation. Stem Cell Res Ther 2018. [PMID: 29523191 PMCID: PMC5845373 DOI: 10.1186/s13287-018-0809-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a reliable resource for bone regeneration and tissue engineering, but the molecular mechanisms of differentiation remain unclear. The tumor antigen 15-leucine-rich repeat containing membrane protein (LRRC15) is a transmembrane protein demonstrated to play important roles in cancer. However, little is known about its role in osteogenesis. This study was to evaluate the functions of LRRC15 in osteogenic differentiation of MSCs. Methods Osteogenic-induction treatment and the ovariectomized (OVX) model were performed to investigate the potential relationship between LRRC15 and MSC osteogenesis. A loss-of-function study was used to explore the functions of LRRC15 in osteogenic differentiation of MSCs in vitro and in vivo. NF-κB pathway inhibitor BAY117082, siRNA, nucleocytoplasmic separation, and ChIP assays were performed to clarify the molecular mechanism of LRRC15 in bone regulation. Results Our results first demonstrated that LRRC15 expression was upregulated upon osteogenic induction, and the level of LRRC15 was significantly decreased in OVX mice. Both in-vitro and in-vivo experiments detected that LRRC15 was required for osteogenesis of MSCs. Mechanistically, LRRC15 inhibited transcription factor NF-κB signaling by affecting the subcellular localization of p65. Further studies indicated that LRRC15 regulated osteogenic differentiation in a p65-dependent manner. Conclusions Taken together, our findings reveal that LRRC15 is an essential regulator for osteogenesis of MSCs through modulating p65 cytoplasmic/nuclear translocation, and give a novel hint for MSC-mediated bone regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0809-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
47
|
Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem Cell Res Ther 2018. [PMID: 29514703 PMCID: PMC5842656 DOI: 10.1186/s13287-018-0799-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are an attractive cell source for bone tissue engineering and have great potential for bone regeneration and defect repair. The transcriptional coactivator with PDZ-binding motif (TAZ) has been demonstrated to modulate osteogenic and adipogenic differentiation of mesenchymal stem cells. However, its roles during ADSC differentiation and therapeutic potentials for bone regeneration have as yet not been well established. Methods TAZ expression was measured during osteogenic differentiation of ADSCs in vitro. Both loss-of-function and gain-of-function approaches by TAZ knockdown or enforced overexpression were utilized to determine its functions during osteogenic differentiation of ADSCs. TM-25659, a chemical activator of TAZ, was used to determine whether pharmacological activation of TAZ in ADSCs enhanced osteogenic differentiation in vitro and bone formation in animal models. The molecular mechanisms underlying TAZ in promoting osteogenesis of ADSCs were also explored. Results Increased TAZ expression was observed during osteogenic differentiation of human ADSCs. TAZ knockdown resulted in compromised osteogenic differentiation and enhanced adipogenic differentiation of ADSCs. In contrast, enforced TAZ overexpression yielded increased osteogenic differentiation and bone regeneration in vivo, and impaired adipogenic differentiation of ADSCs. Pharmacological activation of TAZ by its chemical activator TM-25659 facilitated osteogenic differentiation of ADSCs. Noticeably, transient treatment of ADSCs with TM-25659 or intraperitoneal injection of TM-25659 significantly enhanced bone regeneration of ADSCs loaded with porous β-TCP in vivo. Mechanistically, TM-25659 exposure significantly promoted TAZ phosphorylation and nuclear translocation, and potentiated the assembly of the TAZ-Runx2 complex. Subsequently, the TAZ-Runx2 complex was further recruited to the promoter of osteocalcin and in turn enhanced its transcription. Conclusions Our findings indicate that TAZ is a key mediator that promotes ADSC commitment to the osteoblast lineage. Pharmacological activation of TAZ in ADSCs might become a feasible and promising approach to enhance bone regeneration and repair. Electronic supplementary material The online version of this article (10.1186/s13287-018-0799-z) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, Zhang X, Wu G, Zhou Y. Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5240-5254. [PMID: 29359912 DOI: 10.1021/acsami.7b17620] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exosomes, nanoscale extracellular vesicles functioning as cell-to-cell communicators, are an emerging promising therapeutic in the field of bone tissue engineering. Here, we report the construction and evaluation of a novel cell-free tissue-engineered bone that successfully accelerated the restoration of critical-sized mouse calvarial defects through combining exosomes derived from human adipose-derived stem cells (hASCs) with poly(lactic-co-glycolic acid) (PLGA) scaffolds. The exosomes were immobilized on the polydopamine-coating PLGA (PLGA/pDA) scaffolds under mild chemical conditions. Specifically, we investigated the effects of hASC-derived exosomes on the osteogenic, proliferation, and migration capabilities of human bone marrow-derived mesenchymal stem cells in vitro and optimized their osteoinductive effects through osteogenic induction. Furthermore, an in vitro assay showed exosomes could release from PLGA/pDA scaffold slowly and consistently and in vivo results showed this cell-free system enhanced bone regeneration significantly, at least partially through its osteoinductive effects and capacities of promoting mesenchymal stem cells migration and homing in the newly formed bone tissue. Therefore, overall results demonstrated that our novel cell-free system comprised of hASC-derived exosomes and PLGA/pDA scaffold provides a new therapeutic paradigm for bone tissue engineering and showed promising potential in repairing bone defects.
Collapse
Affiliation(s)
| | | | | | | | - Miao Zhou
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou 510140, China
| | | | | | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam , Amsterdam 1081 LA, The Netherlands
| | | |
Collapse
|
49
|
Douglas TE, Vandrovcová M, Kročilová N, Keppler JK, Zárubová J, Skirtach AG, Bačáková L. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci 2018; 101:28-36. [DOI: 10.3168/jds.2017-13119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
|
50
|
Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:1-19. [PMID: 30406362 DOI: 10.1007/5584_2018_278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomaterials are key components in tissue engineering and regenerative medicine applications, with the intended purpose of reducing the burden of disease and enhancing the quality of life of a large number of patients. The success of many regenerative medicine strategies, such as cell-based therapies, artificial organs, and engineered living tissues, is highly dependent on the ability to design or produce suitable biomaterials that can support and guide cells during tissue healing and remodelling processes. This chapter presents an overview about basic research concerning the use of different biomaterials for tissue engineering and regenerative medicine applications. Starting from a historical perspective, the chapter introduces the basic principles of designing biomaterials for tissue regeneration approaches. The main focus is set on describing the main classes of biomaterials that have been applied in regenerative medicine, including natural and synthetic polymers, bioactive ceramics, and composites. For each class of biomaterials, some of the most important physicochemical and biological properties are presented. Finally, some challenges and concerns that remain in this field are presented and discussed.
Collapse
|