1
|
Elshennawy M, Ouachikh O, Aissouni Y, Youssef S, Zaki SS, Durif F, Hafidi A. Behavioral, Cellular and Molecular Responses to Cold and Mechanical Stimuli in Rats with Bilateral Dopamine Depletion in the Mesencephalic Dopaminergic Neurons. Neuroscience 2021; 479:107-124. [PMID: 34748858 DOI: 10.1016/j.neuroscience.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Pain is the major non-motor symptom in Parkinson's disease (PD). Preclinical studies have mostly investigated mechanical pain by considering the decrease in a nociceptive threshold. Only a few studies have focused on thermal pain in animal models of PD. Therefore, the goal of this study was to assess the thermal nociceptive behavior of rats subjected to 6-hydroxydopamine (6-OHDA) administration, which constitutes an animal model of PD. Thermal plate investigation demonstrated significant thermal sensitivity to cold temperatures of 10 °C and 15 °C, and not to higher temperatures, in 6-OHDA-lesioned rats when compared with sham. 6-OHDA-lesioned rats also showed cold allodynia as demonstrated by a significant difference in the number of flinches, latency and reaction time to acetone stimulus. Ropinirole administration, a dopamine receptor 2 (D2R) agonist, blocked the acetone-induced cold allodynia in 6-OHDA-lesioned rats. In addition, mechanical hypersensitivity and static allodynia, as demonstrated by a significant difference in the vocalization threshold and pain score respectively, were noticed in 6-OHDA-lesioned rats. Acetone stimulus induced a significant increase in extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, a pain process molecular marker, in the spinal dorsal horn (SDH), the insular and cingulate cortices in 6-OHDA-lesioned rats when compared to sham. In 6-OHDA-lesioned rats, there was a significant augmentation in the expression of both protein kinase C gamma (PKCγ) and glutamate decarboxylase 67 (GAD67) in the SDH. This highlighted an increase in excitation and a decrease in inhibition in the SDH. Overall, the present study demonstrated a clear cold thermal hypersensitivity, in addition to a mechanical one, in 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Mennatallah Elshennawy
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Omar Ouachikh
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Youssef Aissouni
- Université Clermont Auvergne, INSERM, NeuroDol U1107, 63000 Clermont-Ferrand, France.
| | - Shahira Youssef
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Shahira S Zaki
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Franck Durif
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Aziz Hafidi
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| |
Collapse
|
2
|
Nigrostriatal dopamine depletion promoted an increase in inhibitory markers (parvalbumin, GAD67, VGAT) and cold allodynia. Neurosci Lett 2021; 762:136135. [PMID: 34311052 DOI: 10.1016/j.neulet.2021.136135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023]
Abstract
Pain constitutes the major non-motor symptom in Parkinson's disease (PD). Its mechanism is still poorly understood although an increase in excitation or a decrease in inhibition have been reported in preclinical studies. The aim of this study was to investigate gamma aminobutyric acid (GABA) inhibition in the 6-hydroxydopamine (6-OHDA) PD rat model. Therefore, the expression of three inhibitory markers parvalbumin, glutamate decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) was evaluated, besides cold allodynia, in bilateral 6-OHDA lesioned rat. There was a significant increase in the expression of the three markers labeling within the spinal dorsal horn (SDH) of 6-OHDA lesioned rats. In parallel, there was also an increase of the excitatory marker protein kinase C gamma (PKCγ) . PKCγ cells have a crucial role in pain chronicity and are regulated by GABAergic influences. Central dopamine depletion induced an increase in excitation as reveled by an increase in cFOS expression upon acetone stimulus and the presence of cold allodynia. In addition, dopamine depletion induced increased expression in inhibitory markers, which may reflect a disinhibition or a decreased inhibition in 6-OHDA lesioned rats.
Collapse
|
3
|
Barroso-Chinea P, Bezard E. Basal Ganglia circuits underlying the pathophysiology of levodopa-induced dyskinesia. Front Neuroanat 2010; 4. [PMID: 20890450 PMCID: PMC2947938 DOI: 10.3389/fnana.2010.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 11/13/2022] Open
Abstract
Involuntary movements or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease. Dyskinesia is, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signaling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made in functional anatomy and neuroimaging that have had a tremendous impact on our understanding of the anatomo-functional organization of the basal ganglia in Parkinsonism and dyskinetic states, notably the demonstration that dyskinesia are linked to a pathological processing of limbic and cognitive information.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Centre National de la Recherche Scientifique UMR 5227, Bordeaux Institute of Neuroscience, Université Victor-Segalen Bordeaux 2 Bordeaux, France
| | | |
Collapse
|
4
|
Yamamoto N, Soghomonian JJ. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion. Neuroscience 2008; 154:1088-99. [PMID: 18495353 PMCID: PMC2483836 DOI: 10.1016/j.neuroscience.2008.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/15/2022]
Abstract
Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine-depleted striatum.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Room L1004, Boston, MA 02118, USA
| | | |
Collapse
|
5
|
Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. ACTA ACUST UNITED AC 2006; 52:293-304. [PMID: 16759710 DOI: 10.1016/j.brainresrev.2006.04.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/29/2022]
Abstract
The 67 and 65 kDa isoforms of glutamic acid decarboxylase, the key enzymes for GABA biosynthesis, are expressed at altered levels in postmortem brain of subjects diagnosed with schizophrenia and related disorders, including autism and bipolar illness. The predominant finding is a decrease in GAD67 mRNA levels, affecting multiple brain regions, including prefrontal and temporal cortex. Postmortem studies, in conjunction with animal models, identified several mechanisms that contribute to the dysregulation of GAD67 in cerebral cortex. These include disordered connectivity formation during development, abnormal expression of Reelin and neural cell adhesion molecule (NCAM) glycoproteins, defects in neurotrophin signaling and alterations in dopaminergic and glutamatergic neurotransmission. These mechanisms are likely to operate in conjunction with genetic risk factors for psychosis, including sequence polymorphisms residing in the promoter of GAD1 (2q31), the gene encoding GAD67. We propose an integrative model, with multiple molecular and cellular mechanisms contributing to transcriptional dysregulation of GAD67 and cortical dysfunction in psychosis.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, 01604, USA.
| | | |
Collapse
|
6
|
Stephenson DT, Li Q, Simmons C, Connell MA, Meglasson MD, Merchant K, Emborg ME. Expression of GAD65 and GAD67 immunoreactivity in MPTP-treated monkeys with or without l-DOPA administration. Neurobiol Dis 2005; 20:347-59. [PMID: 15882945 DOI: 10.1016/j.nbd.2005.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Revised: 03/20/2005] [Accepted: 03/22/2005] [Indexed: 11/16/2022] Open
Abstract
This study investigated the consequences of levodopa treatment on the expression of the 65- and 67-kDa isoforms of glutamate decarboxylase (GAD65 and GAD67) immunoreactivity in the basal ganglia and cortex of monkeys rendered Parkinsonian by systemic MPTP administration. All MPTP-treated monkeys showed Parkinsonian impairment and selective loss of tyrosine hydroxylase (TH) with sparing of GAD immunoreactive (-ir) fibers and terminals in basal ganglia. The distribution of GAD65- and GAD67-ir in the cortex, caudate, and putamen was not significantly different in MPTP vs. naïve monkeys nor as a function of L-DOPA treatment. In comparison, the expression of GAD67- but not GAD65-ir was augmented in the globus pallidus in MPTP-treated monkeys. Quantification revealed significant increases in number of GAD67-ir neurons in the external and internal segments of the globus pallidus while no significant difference in the number of GAD65-ir neurons was observed. L-DOPA treatment did not significantly change the number of GAD65- or GAD67-ir pallidal neurons following MPTP. These results support and extend the findings that transcriptional elevation of GAD67 occurs in the globus pallidus and demonstrate that GAD65 and GAD67 are differentially altered following lesion. The finding of elevated GAD67 expression in the pallidum is consistent with alterations in inhibitory neurocircuitry playing a key role in the pathophysiology of motor disturbances in Parkinson's disease.
Collapse
|
7
|
Katz J, Nielsen KM, Soghomonian JJ. Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopamine-lesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra, pars reticulata. Neuroscience 2005; 132:833-42. [PMID: 15837143 DOI: 10.1016/j.neuroscience.2004.12.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
Current evidence suggests that behavioral sensitization to the chronic administration of levodopa (L-DOPA) to dopamine-depleted animals involves a plasticity of GABA-mediated signaling in output regions of the basal ganglia. The purpose of this study was to compare in adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion the effects of an acute or chronic (for 3 or 7 days) injection of L-DOPA on mRNA levels encoding for glutamic acid decarboxylase (GAD65 and GAD67) in the striatum and GABA(A) receptor alpha1, beta2 and gamma2 subunits in the substantia nigra, pars reticulata (SNr), by in situ hybridization histochemistry. In addition, immunostaining levels for the alpha1 subunit were examined in the SNr. In agreement with previous studies, we found that L-DOPA administration increased GAD mRNA levels in the striatum of 6-OHDA-lesioned rats. However, the magnitude of this effect increased with the number of injections of L-DOPA. On the other hand, we found that 6-OHDA lesions resulted in increases in alpha1, beta2 and gamma2 mRNA levels in the ipsilateral SNr, which were normalized or decreased compared with the contralateral side by the acute or chronic administration of L-DOPA. In addition, alpha1 immunostaining in the SNr was significantly decreased in rats injected for 7 days but not for 3 days or acutely with L-DOPA. Our results demonstrate that a chronic administration of L-DOPA results in a progressive increase in GAD and decrease in GABA(A) receptor expression in the striatum and SNr, respectively. They provide further evidence that behavioral sensitization and dyskinesia induced by a chronic administration of L-DOPA in an experimental model of Parkinson's disease is paralleled by a plasticity of GABA-mediated signaling in the SNr.
Collapse
Affiliation(s)
- J Katz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
8
|
Fatemi SH, Hossein Fatemi S, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 2005; 72:109-22. [PMID: 15560956 DOI: 10.1016/j.schres.2004.02.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/05/2004] [Accepted: 02/13/2004] [Indexed: 01/22/2023]
Abstract
BACKGROUND Glutamic acid decarboxylase (GAD) is the rate limiting enzyme responsible for conversion of glutamate to gamma-aminobutyric acid (GABA) regulating levels of glutamate and GABA in the mammalian brain. Reelin is an extracellular matrix protein that helps in normal lamination of the embryonic brain and subserves synaptic plasticity in adult brain. Both GAD and Reelin are colocalized to the same GABAergic interneurons in several brain sites. We hypothesized that levels of GAD and Reelin would be altered in cerebellum of subjects with schizophrenia and mood disorders differentially vs. controls. METHODS We employed SDS-PAGE and Western blotting to measure levels of GAD isomers 65 and 67 kDa and Reelin isoforms 410-, 330- and 180-kDa proteins as well as beta-actin in cerebellum of subjects with schizophrenia, bipolar disorder and major depression vs. controls (N = 15 per group). RESULTS GAD 65- and 67-kDa levels were decreased significantly in bipolar, depressed and schizophrenic subjects (p < 0.05) vs. controls. Reelin 410- and 180-kDa proteins decreased significantly (p < 0.05) in bipolar subjects vs. controls. Reelin 180 kDa was decreased significantly (p < 0.05) in schizophrenics vs. controls. beta-Actin levels did not vary significantly between groups. There were no significant effects of confounding variables on levels of various proteins. CONCLUSION This study demonstrates for the first time significant deficits in GABAergic markers Reelin and GAD 65 and 67 proteins in bipolar subjects and global deficits in the latter proteins in schizophrenia and mood disorders, accounting for the reported alterations in CSF/plasma levels of glutamate and GABA in these disorders.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, MMC #392, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Nielsen KM, Soghomonian JJ. Dual effects of intermittent or continuous L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-OHDA lesion. Synapse 2003; 49:246-60. [PMID: 12827644 DOI: 10.1002/syn.10234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intermittent oral doses of levodopa (L-DOPA) are routinely used to treat Parkinson's disease, but with prolonged use can result in adverse motor complications, such as dyskinesia. Continuous administration of L-DOPA achieves therapeutic efficacy without producing this effect, yet the molecular mechanisms are unclear. This study examined, by in situ hybridization histochemistry, the effects of continuous or intermittent L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Results were compared to 6-OHDA-treated rats receiving vehicle. Our results provide original evidence that continuous L-DOPA normalizes the 6-OHDA-lesion-induced increase in mRNA levels encoding for the 67 kDa isoform of glutamate decarboxylase in neurons of the globus pallidus and cytochrome oxidase subunit I mRNA levels in the subthalamic nucleus. The extent of normalization did not differ between the continuous and intermittent groups. In addition, intermittent L-DOPA induced an increase in the mRNA levels encoding for the 65 kDa isoform of glutamate decarboxylase in globus pallidus neurons ipsilateral to the lesion and a bilateral increase in c-fos mRNA expression in the subthalamic nucleus. These results suggest that continuous L-DOPA tends to normalize the 6-OHDA-lesion-induced alterations in cell signaling in the pallido-subthalamic loop. On the other hand, we propose that chronic intermittent L-DOPA exerts a dual effect by normalizing cell signaling in a subpopulation of neurons in the globus pallidus and subthalamic nucleus while inducing abnormal signaling in another subpopulation.
Collapse
Affiliation(s)
- Kirsten M Nielsen
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|