1
|
Milton AL. Drug memory reconsolidation: from molecular mechanisms to the clinical context. Transl Psychiatry 2023; 13:370. [PMID: 38040677 PMCID: PMC10692359 DOI: 10.1038/s41398-023-02666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Since its rediscovery at the beginning of the 21st Century, memory reconsolidation has been proposed to be a therapeutic target for reducing the impact of emotional memories that can go awry in mental health disorders such as drug addiction (substance use disorder, SUD). Addiction can be conceptualised as a disorder of learning and memory, in which both pavlovian and instrumental learning systems become hijacked into supporting drug-seeking and drug-taking behaviours. The past two decades of research have characterised the details of the molecular pathways supporting the reconsolidation of pavlovian cue-drug memories, with more recent work indicating that the reconsolidation of instrumental drug-seeking memories also relies upon similar mechanisms. This narrative review considers what is known about the mechanisms underlying the reconsolidation of pavlovian and instrumental memories associated with drug use, how these approaches have translated to experimental medicine studies, and the challenges and opportunities for the clinical use of reconsolidation-based therapies.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77:3745-3768. [PMID: 32172301 PMCID: PMC7492456 DOI: 10.1007/s00018-020-03498-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Siemsen BM, McFaddin JA, Haigh K, Brock AG, Nan Leath M, Hooker KN, McGonegal LK, Scofield MD. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J Neurochem 2020; 153:599-616. [PMID: 31901130 PMCID: PMC7593647 DOI: 10.1111/jnc.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
Cue-induced reinstatement of cocaine seeking after self-administration (SA) and extinction relies on glutamate release in the nucleus accumbens core (NAcore), which activates neuronal nitric oxide synthase interneurons. Nitric oxide (NO) is required for structural plasticity in NAcore medium spiny neurons, as well as cued cocaine seeking. However, NO release in the NAcore during reinstatement has yet to be directly measured. Furthermore, the temporal relationship between glutamate release and the induction of an NO response also remains unknown. Using wireless amperometric recordings in awake behaving rats, we quantified the magnitude and temporal dynamics of novel context- and cue-induced reinstatement-evoked glutamate and NO release in the NAcore. We found that re-exposure to cocaine-conditioned stimuli following SA and extinction increased extracellular glutamate, leading to release of NO in the NAcore. In contrast, exposing drug-naïve rats to a novel context led to a lower magnitude rise in glutamate in the NAcore relative to cue-induced reinstatement. Interestingly, novel context exposure evoked a higher magnitude NO response relative to cue-induced reinstatement. Despite differences in magnitude, novel context evoked-NO release in the NAcore was also temporally delayed when compared to glutamate. These results demonstrate a dissociation between the magnitude of cocaine cue- and novel context-evoked glutamate and NO release in the NAcore, yet similarity in the temporal dynamics of their release. Together, these data contribute to a greater understanding of the relationship between glutamate and NO, two neurotransmitters implicated in encoding the valence of distinct contextual stimuli.
Collapse
Affiliation(s)
- Benjamin M Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John A McFaddin
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Keiana Haigh
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley G Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Nan Leath
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N Hooker
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lilly K McGonegal
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Thériault RK, Leri F, Kalisch B. The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacology (Berl) 2018; 235:2675-2685. [PMID: 29992335 DOI: 10.1007/s00213-018-4961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE There is evidence that central mu opioid receptors (MORs) are implicated in several aspects of cocaine addiction, and that MOR expression is elevated by cocaine in vitro and in the nucleus accumbens (NAc) when administered in vivo. OBJECTIVE To understand the cellular mechanisms involved in regulating MOR expression, this study explored whether neuronal nitric oxide synthase (nNOS) modulates the neurochemical and behavioral effects of acute and repeated cocaine administration. METHODS Male Sprague-Dawley rats received a single cocaine injection (20 mg/kg, i.p.) in combination with the selective nNOS inhibitor 7-nitroindazole (7-NI) (0, 25, or 50 mg/kg, i.p.), and the expression of MOR and nNOS messenger RNA (mRNA) and protein levels in the NAc were measured. In a separate conditioned place preference (CPP) experiment, 7-NI (0, 25, or 50 mg/kg, i.p.) was administered prior to cocaine (0 or 20 mg/kg, i.p.) conditioning sessions, and levels of MOR and nNOS mRNA and protein in the NAc were measured following CPP test. RESULTS Acute cocaine administration significantly enhanced nNOS and MOR mRNA and protein expression in the NAc, and this increase in MOR expression was blocked by 7-NI. Furthermore, in 7-NI pre-treated rats, cocaine-induced CPP was not statistically significant and the increase in MOR mRNA expression in the NAc in these animals was attenuated. CONCLUSIONS These findings suggest that nNOS modulates MOR expression following acute cocaine administration, and that cocaine CPP and associated upregulation of MOR expression involve both nNOS-dependent and independent mechanisms. Elucidation of these molecular events may identify useful therapeutic target for cocaine addiction.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Francesco Leri
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Department of Psychology, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Bettina Kalisch
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada. .,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Beiser T, Numa R, Kohen R, Yaka R. Chronic treatment with Tempol during acquisition or withdrawal from CPP abolishes the expression of cocaine reward and diminishes oxidative damage. Sci Rep 2017; 7:11162. [PMID: 28894248 PMCID: PMC5593848 DOI: 10.1038/s41598-017-11511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023] Open
Abstract
In previous studies, we reported that pretreatment with the antioxidant Tempol attenuated the development and expression of cocaine-induced psychomotor sensitization in rats and diminished cocaine-induced oxidative stress (OS) in the prefrontal cortex (PFC) and nucleus accumbens (NAc), suggesting a potential role for Tempol in interfering with cocaine-related psychomotor sensitization. The aim of the current study was to examine the role of Tempol in reward and reinforcement using the conditioned place preference (CPP) paradigm. We found that administration of Tempol during the conditioning session abolished the expression of cocaine-induced CPP. We also found that OS was significantly elevated following the establishment of CPP, and that cocaine-induced OS was significantly diminished by pretreatment with Tempol during conditioning. Furthermore, we found that repeated, but not single, administration of Tempol for seven days during withdrawal from CPP resulted in significant attenuation in the expression of CPP. Moreover, Tempol did not affect the expression of food reward. Taken together, these findings provide evidence for the involvement of Tempol in regulating cocaine rewarding properties without affecting natural rewards. Since Tempol was found to be effective in reducing OS and expression of CPP following withdrawal, it may be a potential treatment for cocaine addiction.
Collapse
Affiliation(s)
- Tehila Beiser
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ran Numa
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ron Kohen
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
6
|
Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Deconstructing the molecular architecture of olfactory areas using proteomics. Proteomics Clin Appl 2016; 10:1178-1190. [PMID: 27226001 DOI: 10.1002/prca.201500147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 11/07/2022]
Abstract
The anatomy of the olfactory system is highly complex, comprising a system of olfactory receptors, pathways for the transmission of olfactory information, and structures for the recognition, discrimination, and memorization of odors. During the last years, proteomics has emerged as a large-scale comprehensive approach to characterize and quantify specific olfactory-related proteomes in different biological conditions such as olfactory learning, neurodegeneration, and ageing between others. The current work reviews recent applications of proteomics to olfaction with particular focus on quantitative proteome profiling studies performed on olfactory areas from laboratory animal models as well as proteomic characterizations performed on specific brain structures and fluids involved in human smell. Finally, we will also discuss the potential application of proteomics to study global proteome dynamics and posttranslationally modified proteomes in order to unravel cell-signaling networks that occur from peripheral structures to olfactory cortical areas during odor processing.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Proteomics Unit, Navarrabiomed, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Proteomics Unit, Navarrabiomed, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Liddie S, Itzhak Y. Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory. Addict Biol 2016; 21:242-54. [PMID: 25351485 DOI: 10.1111/adb.12191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs of abuse act as reinforcers because they influence learning and memory processes resulting in long-term memory of drug reward. We have previously shown that mice conditioned by fixed daily dose of cocaine (Fix-C) or daily escalating doses of cocaine (Esc-C) resulted in short- and long-term persistence of drug memory, respectively, suggesting different mechanisms in acquisition of cocaine memory. The present study was undertaken to investigate the differential contribution of N-methyl-D-aspartate receptor (NMDAR) subunits in the formation of Fix-C and Esc-C memory in C57BL/6J mice. Training by Esc-C resulted in marked elevation in hippocampal expression of Grin2b mRNA and NR2B protein levels compared with training by Fix-C. The NR2B-containing NMDAR antagonist ifenprodil had similar attenuating effects on acquisition and reconsolidation of Fix-C and Esc-C memory. However, the NMDAR antagonist MK-801 had differential effects: (1) higher doses of MK-801 were required for post-retrieval disruption of reconsolidation of Esc-C memory than Fix-C memory; and (2) pre-retrieval MK-801 inhibited extinction of Fix-C memory but it had no effect on Esc-C memory. In addition, blockade of NMDAR downstream signaling pathways also showed differential regulation of Fix-C and Esc-C memory. Inhibition of neuronal nitric oxide synthase attenuated acquisition and disrupted reconsolidation of Fix-C but not Esc-C memory. In contrast, the mitogen-activating extracellular kinase inhibitor SL327 attenuated reconsolidation of Esc-C but not Fix-C memory. These results suggest that NMDAR downstream signaling molecules associated with consolidation and reconsolidation of cocaine-associated memory may vary upon changes in the salience of cocaine reward during conditioning.
Collapse
Affiliation(s)
- Shervin Liddie
- Division of Neuroscience; University of Miami Miller School of Medicine; Miami FL USA
| | - Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami FL USA
- Division of Neuroscience; University of Miami Miller School of Medicine; Miami FL USA
| |
Collapse
|
8
|
Involvement of the insular nitric oxide signaling pathway in the expression of morphine-induced conditioned place preference in rats. Neuroreport 2015; 25:641-6. [PMID: 24800987 DOI: 10.1097/wnr.0000000000000146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) has been recently reported to play an important role in the rewarding effects of addictive drugs. The regional NO signaling in the brain, however, is not completely clear. Here, we studied the effects of insular NO signaling on the expression of morphine-induced conditioned place preference (CPP). Insular microinjection of the NO inhibitors N-nitro L-arginine methyl ester (L-NAME) and 7-nitroindazole reduced the expression of morphine-induced CPP. The NO donor molsidomine, in contrast, reversed L-NAME-induced reduction of CPP expression. These results suggest that insular NO signaling is involved in the expression of morphine-CPP.
Collapse
|
9
|
Itzhak Y, Perez-Lanza D, Liddie S. The strength of aversive and appetitive associations and maladaptive behaviors. IUBMB Life 2014; 66:559-71. [PMID: 25196552 DOI: 10.1002/iub.1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/22/2022]
Abstract
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
10
|
Balaban PM, Roshchin M, Timoshenko AK, Gainutdinov KL, Bogodvid TK, Muranova LN, Zuzina AB, Korshunova TA. Nitric oxide is necessary for labilization of a consolidated context memory during reconsolidation in terrestrial snails. Eur J Neurosci 2014; 40:2963-70. [PMID: 24910164 DOI: 10.1111/ejn.12642] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is known to be involved in associative memory formation. We investigated the influence of blocking NO function on the reconsolidation of context memory in terrestrial snails (Helix lucorum L.). After a 10 day session of electric shocks in one context only, context memory in snails was observed in test sessions as the significant difference of amplitudes of withdrawal responses to tactile stimuli in two different contexts. After a 1 day rest, a session of 'reminding' was performed, preceded by injection in different groups of the snails with either vehicle or combination of the protein synthesis blocker anisomycin (ANI) with one of the following drugs: the NO scavenger carboxy-PTIO, the NO-synthase inhibitors N-omega-nitro-L-arginin, nitroindazole and NG-nitro-L-arginine methyl ester hydrochloride, or the NO donor S-nitroso-N-acetyl-DL-penicillamine. Testing the context memory at different time intervals after the reminder under ANI injection showed that the context memory was impaired at 24 h and later, whereas the reminder under combined injection of ANI and each of the NO-synthase inhibitors used or the NO scavenger showed no impairment of long-term context memory. Injection of the NO donor S-nitroso-N-acetyl-DL-penicillamine with or without reminder had no effect on context memory. The results obtained demonstrated that NO is necessary for labilization of a consolidated context memory.
Collapse
Affiliation(s)
- Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5a, Moscow, 117485, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Torregrossa MM, Taylor JR. Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology (Berl) 2013; 226:659-72. [PMID: 22638814 PMCID: PMC3466391 DOI: 10.1007/s00213-012-2750-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/13/2012] [Indexed: 11/29/2022]
Abstract
Finding effective long-lasting treatments for drug addiction has been an elusive goal. Consequently, researchers are beginning to investigate novel treatment strategies including manipulations of drug-associated memories. When environmental stimuli (cues) become associated with drug use, they become powerful motivators of continued drug use and relapse after abstinence. Reducing the strength of these cue-drug memories could decrease the number of factors that induce craving and relapse to aid in the treatment of addiction. Enhancing the consolidation of extinction learning and/or disrupting cue-drug memory reconsolidation are two strategies that have been proposed to reduce the strength of cues in motivating drug-seeking and drug-taking behavior. Here, we review the latest basic and clinical research elucidating the mechanisms underlying consolidation of extinction and reconsolidation of cue-drug memories in the hopes of developing pharmacological tools that exploit these signaling systems to treat addiction.
Collapse
Affiliation(s)
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
12
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
13
|
Sorg BA. Reconsolidation of drug memories. Neurosci Biobehav Rev 2012; 36:1400-17. [PMID: 22342780 PMCID: PMC3526670 DOI: 10.1016/j.neubiorev.2012.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/30/2022]
Abstract
Persistent, unwanted memories are believed to be key contributors to drug addiction and the chronic relapse problem over the lifetime of the addict. Contrary to the long-held idea that memories are static and fixed, new studies in the last decade have shown that memories are dynamic and changeable. However, they are changeable only under specific conditions. When a memory is retrieved (reactivated), it becomes labile for a period of minutes to hours and then is reconsolidated to maintain long-term memory. Recent findings indicate that even well-established long-term memories may be susceptible to disruption by interfering with reconsolidation through delivery of certain amnestic agents during memory retrieval. Here I review the growing literature on memory reconsolidation in animal models of addiction, including sensitization, conditioned place preference and self-administration. I also discuss (a) several issues that need to be considered in interpreting the findings from reconsolidation studies and (b) future challenges and directions for memory reconsolidation studies in the field of addiction. The findings indicate promise for using this approach as a therapy for disrupting the long-lasting memories that can trigger relapse.
Collapse
Affiliation(s)
- Barbara A Sorg
- Translational Addiction Research Center, Alcohol and Drug Abuse Research Program and Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
14
|
Milton AL, Everitt BJ. The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 2012; 36:1119-39. [PMID: 22285426 DOI: 10.1016/j.neubiorev.2012.01.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/09/2012] [Accepted: 01/15/2012] [Indexed: 01/15/2023]
Abstract
Addiction is a chronic, relapsing disorder, characterised by the long-term propensity of addicted individuals to relapse. A major factor that obstructs the attainment of abstinence is the persistence of maladaptive drug-associated memories, which can maintain drug-seeking and taking behaviour and promote unconscious relapse of these habits. Thus, addiction can be conceptualised as a disorder of aberrant learning of the formation of strong instrumental memories linking actions to drug-seeking and taking outcomes that ultimately are expressed as persistent stimulus-response habits; of previously neutral environmental stimuli that become associated with drug highs (and/or withdrawal states) through pavlovian conditioning, and of the subsequent interactions between pavlovian and instrumental memories to influence relapse behaviour. Understanding the psychological, neurobiological and molecular basis of these drug memories may produce new methods of pro-abstinence, anti-relapse treatments for addiction.
Collapse
Affiliation(s)
- Amy L Milton
- Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK.
| | | |
Collapse
|
15
|
Aberrant learning and memory in addiction. Neurobiol Learn Mem 2011; 96:609-23. [PMID: 21376820 DOI: 10.1016/j.nlm.2011.02.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/01/2011] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
Over the past several years, drug addiction has increasingly been accepted to be a disease of the brain as opposed to simply being due to a lack of willpower or personality flaw. Exposure to addictive substances has been shown to create enduring changes in brain structure and function that are thought to underlie the transition to addiction. Specific genetic and environmental vulnerability factors also influence the impact of drugs of abuse on the brain and can enhance the likelihood of becoming an addict. Long-lasting alterations in brain function have been found in neural circuits that are known to be responsible for normal appetitive learning and memory processes and it has been hypothesized that drugs of abuse enhance positive learning and memory about the drug while inhibiting learning about the negative consequences of drug use. Therefore, the addict's behavior becomes increasingly directed towards obtaining and using drugs of abuse, while at the same time developing a poorer ability to stop using, even when the drug is less rewarding or interferes with functioning in other facets of life. In this review we will discuss the clinical evidence that addicted individuals have altered learning and memory and describe the possible neural substrates of this dysfunction. In addition, we will explore the pre-clinical evidence that drugs of abuse cause a progressive disorder of learning and memory, review the molecular and neurobiological changes that may underlie this disorder, determine the genetic and environmental factors that may increase vulnerability to addiction, and suggest potential strategies for treating addiction through manipulations of learning and memory.
Collapse
|
16
|
Boccia MM, Blake MG, Krawczyk MC, Baratti CM. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res 2011; 220:319-24. [PMID: 21333692 DOI: 10.1016/j.bbr.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/25/2022]
Abstract
Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation.
Collapse
Affiliation(s)
- M M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
17
|
Kiyani A, Javadi-Paydar M, Mohammadkhani H, Esmaeili B, Dehpour AR. Lithium chloride disrupts consolidation of morphine-induced conditioned place preference in male mice: the nitric oxide/cyclic GMP signaling pathway. Behav Brain Res 2011; 219:240-7. [PMID: 21241742 DOI: 10.1016/j.bbr.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Lithium effects on brain functions such as cognition, attention, learning and memory are well-established for ages; however, the way it affects these functions and its precise mechanism of action remains unknown. The purpose of this study was to determine the effects of lithium on the consolidation of morphine-associated conditioned place preference and the possible involvement of the NO/cGMP pathway. Using an unbiased conditioned place preference (CPP) model, the effects of lithium (1-100 mg/kg, i.p.), nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (5-100 mg/kg, i.p.), nitric oxide precursor L-arginine (50-150 mg/kg, i.p.) and phosphodiesterase inhibitor sildenafil (5-40 mg/kg, i.p.) on the consolidation of morphine-induced CPP were assessed. In addition, the possible interaction between lithium, L-arginine and sildenafil or subeffective doses of lithium and L-NAME on the consolidation of morphine-induced contextual memory was evaluated. NMRI mice were used in all studies. Lithium (5-30 mg/kg, i.p.), immediately after conditioning trials, significantly reduced the time spent by mice in the reward-paired compartment. Although post-training administration of L-arginine, sildenafil or L-NAME had no significant effect on the consolidation of CPP, concomitant administration of L-arginine (50-150 mg/kg) and sildenafil (5-10 mg/kg) with lithium (30 mg/kg) prevented the impairing effect of lithium. Also, co-administration of sub-effective doses of lithium (1 mg/kg) and L-NAME (5 mg/kg) disrupted consolidation of CPP. However, delayed administration of effective doses of lithium, which shows specific effect on memory consolidation, did not affect morphine-induced CPP. Lithium seems to inhibit consolidation of morphine-induced CPP and this impairing effect might be via nitric oxide/cyclic GMP pathway.
Collapse
Affiliation(s)
- Amirali Kiyani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
18
|
Kelley JB, Anderson KL, Altmann SL, Itzhak Y. Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein. Neuroscience 2010; 174:91-103. [PMID: 21073925 DOI: 10.1016/j.neuroscience.2010.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulators of NO signaling on the acquisition of visually cued fear conditioning were investigated. Third, plasma levels of corticosterone were measured to determine a relationship between physiological and behavioral responses to fear conditioning. Fourth, levels of extracellular signal-related kinase (ERK1/2) and cyclic AMP response element binding protein (CREB) phosphorylation, downstream of NO signaling, were determined in the amygdala as potential correlates of fear learning. Mice underwent single or multiple (4) spaced trainings that consisted of a visual cue (blinking light) paired with footshock. WT mice acquired cued and contextual LTM following single and multiple trainings. nNOS KO mice acquired neither cued nor contextual LTM following a single training; however, multiple trainings improved contextual but not cued LTM. The selective nNOS inhibitor S-methyl-thiocitrulline (SMTC) impaired cued and contextual LTM in WT mice. The NO donor molsidomine recovered contextual LTM but had no effect on cued LTM in nNOS KO mice. Re-exposure to the visual cue 24 h posttraining elicited freezing response and a marked increase in plasma corticosterone levels in WT but not nNOS KO mice. The expression of CREB phosphorylation (Ser-133) was significantly higher in naive nNOS KO mice than in WT counterparts, and pharmacological modulators of NO had significant effects on levels of CREB phosphorylation and expression. These findings suggest that visual cue-dependent LTM is impaired in nNOS KO mice, and aberrant modulation of CREB in the absence of the nNOS gene may hinder cued and contextual LTM formation.
Collapse
Affiliation(s)
- J B Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
19
|
Milton AL, Everitt BJ. The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur J Neurosci 2010; 31:2308-19. [PMID: 20497475 DOI: 10.1111/j.1460-9568.2010.07249.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Memory reconsolidation is the process by which memories, destabilised at retrieval, require restabilisation to persist in the brain. It has been demonstrated that even old, well-established memories require reconsolidation following retrieval; therefore, memory reconsolidation could potentially be exploited to disrupt, or even erase, aberrant memories that underlie psychiatric disorders, thereby providing a novel therapeutic target. Drug addiction is one such disorder; it is both chronic and relapsing, and one prominent risk factor for a relapse episode is the presentation of environmental cues that have previously been associated with drugs of abuse. This 'cue-induced relapse' can be accounted for in psychological terms by reinforcing memories of the pavlovian association between the cue and the drug, which can thus influence behaviour through at least three psychologically and neurobiologically dissociable mechanisms: conditioned reinforcement, conditioned approach and conditioned motivation. As each of these psychological processes could contribute to the resumption of drug-seeking following abstinence, it is important to develop treatments that can reduce drug-seeking re-established via influences on each or all of these pavlovian processes, in order to minimise the risk of a subsequent relapse. Investigation of the memory reconsolidation mechanisms of the memories underlying conditioned reinforcement, conditioned approach and conditioned motivation indicate that they depend upon different neurochemical systems, including the glutamatergic and adrenergic systems within limbic corticostriatal circuitry. We also discuss here the subsequent translation to the clinic of this preclinical work.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
20
|
Muriach M, López-Pedrajas R, Barcia JM, Sanchez-Villarejo MV, Almansa I, Romero FJ. Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J Neurochem 2010; 114:675-84. [PMID: 20477932 DOI: 10.1111/j.1471-4159.2010.06794.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Different mechanisms have been suggested for cocaine toxicity including an increase in oxidative stress but the association between oxidative status in the brain and cocaine induced-behaviour is poorly understood. Nuclear factor kappa B (NFkappaB) is a sensor of oxidative stress and participates in memory formation that could be involved in drug toxicity and addiction mechanisms. Therefore NFkappaB activity, oxidative stress, neuronal nitric oxide synthase (nNOS) activity, spatial learning and memory as well as the effect of topiramate, a previously proposed therapy for cocaine addiction, were evaluated in an experimental model of cocaine administration in rats. NFkappaB activity was decreased in the frontal cortex of cocaine treated rats, as well as GSH concentration and glutathione peroxidase activity in the hippocampus, whereas nNOS activity in the hippocampus was increased. Memory retrieval of experiences acquired prior to cocaine administration was impaired and negatively correlated with NFkappaB activity in the frontal cortex. In contrast, learning of new tasks was enhanced and correlated with the increase of nNOS activity and the decrease of glutathione peroxidase. These results provide evidence for a possible mechanistic role of oxidative and nitrosative stress and NFkappaB in the alterations induced by cocaine. Topiramate prevented all the alterations observed, showing novel neuroprotective properties.
Collapse
Affiliation(s)
- María Muriach
- Department of Physiology, Pharmacology and Toxicology, Instituto sobre Drogas y Conductas Adictivas (IDYCA), University CEU Cardenal Herrera, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Kelley JB, Anderson KL, Itzhak Y. Pharmacological modulators of nitric oxide signaling and contextual fear conditioning in mice. Psychopharmacology (Berl) 2010; 210:65-74. [PMID: 20224887 DOI: 10.1007/s00213-010-1817-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
RATIONALE Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is a retrograde neuronal messenger that participates in synaptic plasticity, including late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies have shown that nNOS knockout (KO) mice have a severe deficit in contextual fear conditioning compared to wild type (WT) counterparts (Kelley et al. 2009). OBJECTIVES Given the role of the nNOS gene in fear conditioning, we investigated whether systemic administration of modulators of NO signaling affect the formation of contextual and cued fear memories and the effects of these modulators on cyclic 3'5'-guanosine monophosphate (cGMP) levels in the hippocampus and amygdala. METHODS The preferential nNOS inhibitor S-methyl-L-thiocitrulline (SMTC; 10-200 mg/kg) was administered (IP) to WT mice, and the NO donor molsidomine (10 mg/kg) was administered (IP) to nNOS KO mice either 30 min pretraining or immediately posttraining. RESULTS Pretraining SMTC administration to WT mice impaired both short- and long-term memories of contextual (36% inhibition) but not cued fear conditioning. Pretraining molsidomine administration to nNOS KO mice improved their deficit in short- and long-term memories of contextual fear conditioning (46% increase). Posttraining drug administration had no effect on WT and nNOS KO mice. The systemic administration of SMTC dose-dependently decreased cGMP concentrations down to 25% of control, while molsidomine increased cGMP concentration (three- and five-fold) in amygdala and hippocampus, respectively. CONCLUSIONS These findings suggest that neuronal NO and its downstream second messenger cGMP are important for acquisition and subsequent consolidation of LTM of contextual fear conditioning.
Collapse
Affiliation(s)
- Jonathan B Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
22
|
Discrimination between cocaine-associated context and cue in a modified conditioned place preference paradigm: role of the nNOS gene in cue conditioning. Int J Neuropsychopharmacol 2010; 13:171-80. [PMID: 19775503 DOI: 10.1017/s1461145709990666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Collapse
|
23
|
Jüch M, Smalla KH, Kähne T, Lubec G, Tischmeyer W, Gundelfinger ED, Engelmann M. Congenital lack of nNOS impairs long-term social recognition memory and alters the olfactory bulb proteome. Neurobiol Learn Mem 2009; 92:469-84. [DOI: 10.1016/j.nlm.2009.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/19/2009] [Accepted: 06/10/2009] [Indexed: 12/21/2022]
|
24
|
Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice. Psychopharmacology (Berl) 2008; 200:509-19. [PMID: 18592222 DOI: 10.1007/s00213-008-1228-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Previous studies have suggested the involvement of neuronal nitric oxide synthase (nNOS) in the development of sensitization to psychostimulants. Ontogeny-dependent differences in the response to psychostimulants have been reported. OBJECTIVE The objectives were to investigate (a) the short- and long-term consequences of adolescent and adult cocaine exposure on behavioral sensitization and (b) the role of the nNOS gene in behavioral sensitization in adolescent and adult mice. MATERIALS AND METHODS Adolescent and adult wild type (WT) and nNOS knockout (KO) mice received saline or cocaine (20 mg/kg) for 5 days and then were challenged with cocaine (20 mg/kg) after a drug-free period of 10 or 30 days. Locomotor activity was recorded by infrared beam interruptions. nNOS immunoreactive (ir) neurons in the dorsal and ventral striatum were quantified 24 h after repeated administration of cocaine to adolescent and adult WT mice. RESULTS Repeated administration of cocaine to either WT or nNOS KO mice during adolescence resulted in locomotor sensitization, which persisted into adulthood. WT but not KO adult mice developed long-term sensitization to cocaine. Repeated cocaine administration resulted in a 96% increase in the expression of nNOS-ir neurons in the dorsal striatum of adult but not adolescent WT mice. CONCLUSIONS The nNOS gene is essential for the induction of behavioral sensitization to cocaine in adulthood but not in adolescence. The increased expression of nNOS-ir neurons in the dorsal striatum may underlie the induction of behavioral sensitization in adulthood. Thus, the NO-signaling pathway has an ontogeny-dependent role in the neuroplasticity underlying cocaine behavioral sensitization.
Collapse
|
25
|
Taylor JR, Olausson P, Quinn JJ, Torregrossa MM. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 2008; 56 Suppl 1:186-95. [PMID: 18708077 DOI: 10.1016/j.neuropharm.2008.07.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/11/2008] [Accepted: 07/20/2008] [Indexed: 02/01/2023]
Abstract
Drug addiction is a progressive and compulsive disorder, where recurrent craving and relapse to drug-seeking occur even after long periods of abstinence. A major contributing factor to relapse is drug-associated cues. Here we review behavioral and pharmacological studies outlining novel methods of effective and persistent reductions in cue-induced relapse behavior in animal models. We focus on extinction and reconsolidation of cue-drug associations as the memory processes that are the most likely targets for interventions. Extinction involves the formation of new inhibitory memories rather than memory erasure; thus, it should be possible to facilitate the extinction of cue-drug memories to reduce relapse. We propose that context-dependency of extinction might be altered by mnemonic agents, thereby enhancing the efficacy of cue-exposure therapy as treatment strategy. In contrast, interfering with memory reconsolidation processes can disrupt the integrity or strength of specific cue-drug memories. Reconsolidation is argued to be a distinct process that occurs over a brief time period after memory is reactivated/retrieved - when the memory becomes labile and vulnerable to disruption. Reconsolidation is thought to be an independent, perhaps opposing, process to extinction and disruption of reconsolidation has recently been shown to directly affect subsequent cue-drug memory retrieval in an animal model of relapse. We hypothesize that a combined approach aimed at both enhancing the consolidation of cue-drug extinction and interfering with the reconsolidation of cue-drug memories will have a greater potential for persistently inhibiting cue-induced relapse than either treatment alone.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, S307 Connecticut Mental Health Center, Ribicoff Research Laboratories, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | |
Collapse
|